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Abstract

One of the main tasks in nuclear safeguards is the inspection of spent nuclear fuel
(SNF) assemblies to detect possible diversions of special nuclear material such as 235U
and 239Pu. In the inspection, measurements of relevant observable quantities are ac-
quired from the assembly, e.g., neutrons emitted by the spent fuel, and used to verify
whether they are consistent with the declared configuration of the assembly or not.
The procedure requires a physical model that can estimate the response of the detec-
tors for a given arrangement of fuel pins in the assembly, and an unfolding technique,
based on the physical model, that can be applied to retrieve, from the detector re-
sponses, the parameters of the system configuration. In this work, the use of neutron
flux gradient measurements for the identification and characterisation of diversions in
a SNF assembly is investigated. The unfolding procedure relies on an artificial neural
network (ANN), which has the advantage of generalizing in an efficient manner the
mapping of the input (in this case, the measurements from the SNF assembly) to the
output (i.e., the fuel pins that are intact or replaced with dummy pins in the assembly).
The training and testing of the ANN makes use of a dataset generated using Monte
Carlo simulations of a typical 17x17 PWR assembly with different patterns of missing
fuel pins. The dataset is built of unique scenarios so that the ANN can be tested and
assessed over scenarios that are not part of the learning phase. The study shows that
information related to the neutron flux gradient can lead the ANN to be more accurate
in identifying the replaced fuel pins. Although the developed ANN models cannot fully
reconstruct any of the diversion patterns included in the dataset, they provide results
close to the real assembly configurations in most cases.
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1 Introduction

One of the most important tasks in nuclear safeguards is regular inspections to verify that
no special nuclear material is missing from the Spent Nuclear Fuel (SNF) assemblies. In the
safeguards community, such a task is known as detection of partial defects [1, 2]. Spent
nuclear fuel is particularly sensitive from a safeguards perspective because of its residual
fissile material such as 235U and 239Pu. In the recent years, about 80% of the material placed
under safeguards was plutonium contained in SNF [3].

Several methods of Non-Destructive Assay (NDA) such as the Digital Cherenkov Viewing
Device (DCVD) [4] and the Fork Detector (FD) [5] among others are used to detect possible
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diversions in SNF assemblies. These techniques are approved for inspection by the Interna-
tional Atomic Energy Agency (IAEA) and have been extensively applied for many years [6].
The processing and the interpretation of the measurements performed with these techniques
mainly relies on the expert judgement of the inspectors. In addition, the investigations are
focused on the coarse detection of possible illicit diversion of nuclear material.

In order to enhance safeguards inspection of spent fuel, research efforts have been focused
on the development of both detection equipment and methods for the processing of the
measurements. In the field of measurement devices for nuclear engineering, recent progress
has been made in the construction of miniaturized neutron detectors that combine neutron
scintillators and light guiding fibers [7, 8, 9]. These detectors are attractive to nuclear
safeguards because they can be introduced inside a SNF assembly to obtain information
about the neutron flux and its gradient at different locations without the need to move the
assembly from its storage position. For the processing of the measurements to determine
whether spent nuclear fuel has been replaced or not, machine learning has a great potential
since it enables an efficient algorithmic approach that can generalize the relationship from
sets of measurements to system configurations and extract a high level of detail from the
data, reducing the possibility of undetected diversions [10, 11].

The current work investigates the use of measurements of neutron flux gradient (alone or
together with measurements of the neutron flux) as input to a machine learning algorithm
based on an artificial neural network (ANN) for the detection and characterisation of SNF
assemblies with partial defects. The training and testing of the ANN relies on a dataset
generated using Monte Carlo simulations of a typical 17x17 PWR assembly with different
patterns of replaced fuel pins. The dataset is built of unique scenarios so that the ANN can
be tested and assessed over scenarios that are not part of the learning phase of the algorithm.

The methodology is introduced in section 2. The performance of ANN models trained
with data of neutron flux and/or its gradient and used to identify diversion patterns in SNF
assemblies is discussed in section 3. Conclusions are drawn in section 4.

2 Methodology

The general strategy for the verification of the integrity of Spent Nuclear Fuel (SNF)
assemblies is to acquire measurements of relevant observable quantities, such as neutrons
emitted from the spent fuel, and determine whether the outcome of the measurements is
consistent with the declared configuration of the assemblies or not. This procedure requires
a physical model that can reproduce the response of the detectors for a given arrangement of
fuel pins in the assembly. Then, an unfolding technique based on the physical model can be
applied to retrieve, from the detector responses, the parameters of the system configuration.
An underlying assumption is that there is a one-to-one correspondence between the spatial
distribution of the observables and the actual composition of the fuel assembly, whether
intact or not, which is the basis of the identification of the defects.

For the unfolding task, an artificial neural network is studied in this work to identify the
configuration of a SNF assembly and characterise, if any, the diversion, from measurements of
the neutron flux gradient alone or combined with measurements of neutron flux. The artificial
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neural network is trained to ”learn” the relationship between the sets of measurements and
the relative system configurations. The training and testing of the algorithm is performed
with synthetic data generated via Monte Carlo simulations both for the intact system and
for cases represented by specific patterns of replaced fuel pins.

2.1 Dataset

The dataset for the training and testing of the ANN algorithm relies on Monte Carlo
simulations of a 17x17 PWR fuel assembly, see Figure 1 (a). The assembly consists of 264
fuel pins with Zircaloy cladding and an initial enrichment of 3.5 w%. The assembly also
contains 25 empty guide tubes where detectors can be placed.

Figure 1: Intact 17x17 PWR spent nuclear fuel assembly (a) and an example of a diversion
scenario (b).

In the current application, the detection of possible fuel pins missing from their positions
within the assembly is a two-dimensional problem. Accordingly, a 2-dimensional model of the
fuel assembly is developed for two-step simulations using the Monte Carlo code Serpent [12].
The first step is a burn-up simulation of the declared fresh fuel assembly, which consists of
an irradiation cycle that continues until a final burn-up value of 40 MWd/kgU is achieved,
followed by a decay cycle that replicates a cooling time of 5 years in the spent nuclear
fuel pool. The second step is a fixed-source simulation that is performed with the neutron
sources obtained from the burn-up simulation and distributed consistently with the diversion
patterns of interest, in order to estimate the thermal neutron flux and its gradient in the
guide tubes of the assembly (where neutron detectors may be inserted).

The dataset contains data of the fuel assembly without defects and 107 different diversion
patterns, which can be symmetrical or asymmetrical, and have a minimum of 4 up to a
maximum of 180 fuel pins replaced by dummy pins made of stainless steel, see example in
Figure 1 (b).
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Since the arrangement of a 17x17 PWR fuel assembly has 25 guide tubes the calculated
system responses for each configuration are 75, i.e., 25 values of thermal neutron flux, 25
values of the magnitude of the gradient (absolute value), and 25 values of the angle of the
gradient vector (direction). The components of the gradient vector in a guide tube are
derived from the neutron flux estimated in 4 points inside the guide tube.

2.2 Artificial Neural Network

The ANN algorithm is built using the Tensorflow [13] and the Keras [14] open-source
software libraries, and is based on a neural network with an input layer, a hidden layer
and an output layer. The neurons that belong to the input and hidden layers are activated
with the Rectified Linear Unit (ReLU) function, which allows for back-propagation with an
efficient convergence rate. The weights and the learning rate of the network are optimized
with the Adaptive Moment Estimation (ADAM).

The values given by the output nodes on each run lie between 0 and 1, which is due to
using a Sigmoid activation function in the output layer. The Sigmoid function is a typical
choice for outputs that are non-mutually exclusive, where each pin is treated independently
and can be either present or replaced. The ANN is trained such that the output of a node
corresponding to a missing pin should be 1, and that of a node corresponding to a pin which
is present should be zero. In practice, even for a fully trained ANN, the output values will
lie between 0 and 1 which are then interpreted as the probability that the pin is missing. If
the probability of a fuel pin to be identified is between 0.5 and 1, the fuel pin is labelled as
missing (1), If the probability is less than 0.5, the fuel pin is labelled as present (0). Then,
the problem can be considered a multi-label binary classification, and the performance of
the ANN model can be evaluated with the Binary Cross-Entropy loss function.

The number of neurons in the input layer of the models is fixed to the number of input
features used for training, and the the number of neurons in the output layer is equal to
the number of outputs, i.e., one for each of the 264 fuel pins in the assembly. A grid search
optimization is performed to determine the number of neurons for the hidden layer and the
number of epochs and the batch size in the training process.

3 Results

The ANN is trained using: the magnitude and direction of the thermal neutron flux
gradient (Gm+Gd), only the magnitude of the gradient (Gm), only the direction of the
gradient (Gd), only the thermal neutron flux (N), the combination between the neutron flux
and two components of its gradient (N+Gm+Gd), the neutron flux and the magnitude of its
gradient (N+Gm), and the neutron flux and the direction of its gradient (N+Gd).

The training and testing is performed via a 6-fold cross-validation process. Accordingly,
the whole dataset is shuffled and divided into 6 random batches. Five of these batches are
used to train the ANN, while the remaining one is used for the testing. The procedure is
repeated 6 times so that each of the 6 batches serves as testing dataset one time, and then
the results from the 6 tests are aggregated. The cross-validation approach is advantageous
when handling small-sized datasets since all the fuel assemblies will have been used to test
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the model at the end of the training process. This results in a less biased assessment of the
performance of the model which can occur if the model was tested only on one randomly
selected test batch.

The dataset contains 108 fuel assemblies, each of them with a unique configuration.
Therefore, the model is always tested over scenarios that are not seen in the training phase.
This aspect allows assessing the ability of the model to generalize its predictions with respect
to unknown data, which is important since it is not feasible to create a training dataset with
all the diversion patterns (their number would be overwhelming for the limitation of the
computational resources).

After the 6-fold cross-validation is completed, the algorithm is scored based on the number
of fuel pins that it has identified correctly in all the fuel assemblies available from the dataset.
As summarized in Figure 2, the fuel pins are scrutinized according to 4 categories (which
define a so-called confusion matrix). The ’True Negatives’ are all the correctly predicted
intact fuel pins, and the ’True Positives’ are all the correctly predicted missing fuel pins. On
the other hand, the ’False Positives’ are the intact fuel pins that are wrongly predicted as
missing and the ’False negatives’ are the missing fuel pins wrongly predicted as intact.

Figure 2: Definition of the categories for the scrutiny of the predicted fuel pins.

The performance of the ANN models is quantified with 4 metrics, i.e., the pin-accuracy,
the precision, the recall and the F1 score. The pin-accuracy corresponds to the percentage of
the correctly predicted fuel pins (the sum of the true positives and true negatives) out of the
total number of fuel pins, considering all the fuel assemblies in the dataset. The precision
is defined as the fraction of correctly predicted missing pins (the true positives) over all the
pins predicted as missing (the sum of true and false positives). The recall is equal to the
fraction of correctly predicted missing pins (true positives) over the total number of missing
pins in the dataset (equivalent to the sum of true positives and false negatives). The F1
score is the harmonic mean of the precision and recall values.

Table 1 shows the comparison between the ANN models obtained from the training with
different sets of simulated measurements. The model that uses the neutron flux and the
magnitude of its gradient (N+Gm) has the best performance in all four metrics. The model
that uses only the direction of the gradient vector (Gd) has the lowest performance in terms
of pin-accuracy and precision. The model for only the thermal neutrons (N) has the lowest
performance in terms of recall.

The value of the precision is directly connected to the number of false positives and hence
it reflects the ability of the model to correctly predict intact fuel pins in the assembly. The
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use of both the thermal neutron flux and the magnitude of its gradient (either separate or
combined) result in better precision values, i.e., better identification of the intact fuel pins.
The direction of the gradient vector as an input feature always has a negative effect on the
precision of the ANN model.

The recall value depends on the number of false negatives and thus is an indication of
the ability of the model to correctly predict replaced fuel pins in the assembly. The models
that use the gradient (either in magnitude, direction or both) have greater recall values and
hence can better detect replaced fuel pins, while the model based on the thermal neutron
flux has the lowest recall value.

Table 1: Performance metrics with respect to the input features used to train and test the
ANN model.

Metric
Gradient Detector Responses

N + Gm N + Gm + Gd Gm + Gd Gm N N + Gd Gd

Pin-accuracy 0.82 0.81 0.80 0.80 0.79 0.77 0.76
Precision 0.66 0.63 0.62 0.64 0.64 0.56 0.55
Recall 0.60 0.59 0.59 0.52 0.43 0.44 0.44
F1 0.63 0.61 0.60 0.57 0.51 0.49 0.49

None of the models can fully reproduce any of the diversions. This is expected because
the size of the dataset is relatively small and the training cases are different from the test-
ing cases. However, the majority of the model predictions are close to the real diversion
patterns. As an example, Figures 3 and 4 show two configurations with partial defects
and their reconstruction via the models that use the neutron flux and the magnitude of its
gradient (N+Gm), the neutron flux along with the magnitude and direction of its gradient
(N+Gm+Gd), and the neutron flux (N), respectively.

Figure 3 shows an example where the results of the models reflect the global trends
reported in Table 1. The N+Gm model provides the closest prediction to the real pattern as
indicated by the values of the evaluation metrics for the specific case. The N model and the
N+Gm+Gd model both have values of precision, recall and F1 score equal to zero because
they do not identify any of the missing pins correctly (i.e., no true positives). In addition, the
N model gives less false positives in comparison to the N+Gm+Gd model, which is consistent
with the general finding that the N model tends to have slightly higher precision value than
the N+Gm+Gd model.

A case that does not follow the global trend is also included, see Figure 4. The N model
provides the best reconstruction of the diversion in terms of all the evaluation metrics. Such
result might be related to different factors, e.g., the specific characteristics of the diversion
pattern combined with the knowledge learned by the algorithm from similar scenarios in the
training process. Further studies are needed to clarify these deviations in the behavior of
the models.
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Figure 3: Example of a diversion scenario for which the results of the models are consistent
with the global trends of Table 1.
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Figure 4: Example of a diversion scenario for which the results of the models deviate from
the global trends of Table 1.
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4 Conclusions

An artificial neural network has been investigated for the detection and characterisation
of partial defects in a typical 17x17 PWR SNF assembly from measurements of neutron
flux gradient alone or together with measurements of neutron flux. The ANN has been
trained and tested on a dataset generated with Monte-Carlo simulations of the assembly
with different diversion patterns. The simulated neutron flux and/or its gradient have been
taken at the empty guide tube positions and served as input features to the ANN. As output,
the probability of each fuel pin in the assembly to be replaced is estimated.

Different ANN models have been developed, depending on the input features, i.e., the
neutron flux (N), the magnitude of the gradient (Gm), the direction of the gradient vector
(Gd), and any possible combination of them. The performance of each model was quantified
in terms of the pin-accuracy, the precision, the recall and the F1 score. The ANN model
based on the neutron flux and the magnitude of its gradient (N+Gm) has been found to have
the best performance in all four metrics, indicating that information from the neutron flux
gradient within the fuel assembly can be beneficial to the ANN predictions.

An additional aspect of the study is that the ANN models have been tested and evaluated
over ”unknown” diversion scenarios, i.e., not included in the training phase. Although these
ANN models cannot fully reconstruct any of the diversions available in the dataset, they
do provide results close to the real assembly configurations in most cases. Then, the ANN
models can generalize to some extent the mapping from measurements to patterns of replaced
fuel pins, despite the limited size of the current dataset.

Further investigations are planned to gain insights into how the knowledge learned in the
training affects the ANN predictions of ”unknown” cases, which can be useful for the future
expansion and optimization of the dataset. The analysis also shows the need to clarify the
reasons for the negative effect of the direction of the gradient vector on the precision of an
ANN model.
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