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Abstract

In recent work we have developed a general one-speed transport theory model for the
calculation of the multiplicity moments, used in nuclear safeguards. Quantitative results
were obtained for spheres, cylinders of various shapes, and shells. In all these works,
similarly to the point model, the only neutron reaction was assumed to be fission. Since
the quantitative results for highly multiplicative systems were not in agreement with
recent experiments, we extended the model to include isotropic elastic scattering with-
out energy loss of the neutrons. In the present work, we generalise the model further,
to include inelastic scattering, which requires the introduction of energy dependence
and anisotropic scattering. In the paper, the significance of the elastic scattering, as
well as the need for including inelastic scattering is demonstrated, and the extension to
energy dependent transport theory is described and illustrated with one example.

1 Introduction
The general one-speed transport theory of the multiplicity moments for arbitrary geometries
was elaborated recently as a first step of calculating the multiplicity moments beyond the
point model [1]. The arising integral equations for the factorial moments of the neutrons
leaving the item, induced by a single neutron as well as by a source event (spontaneous fission
or (α, n) event) were solved numerically with a collision number expansion. Quantitative
results were obtained in simple geometries with high order of symmetries, i.e. spheres [1],
cylinders of various aspect ratios [2], and shells [3]. Both spatially distributed and localised
sources were treated. The extension to spherical shells and localised sources was motivated
by recent measurements on the Rocky Flats Shells during the MUSIC campaign conducted
by Los Alamos National Laboratory and assisted by the University of Michigan [4, 5, 6]. It
was shown that in all cases, the space-dependent model predicted larger factorial moments,
and also larger fission rates, than the corresponding point model.

However, when comparing the results of the space-dependent model with the measure-
ments, the calculated values were significantly smaller (in magnitude) than the measure-
ments. It was clear that the relatively moderate increase of the space dependent model as
compared to the point model was not sufficient to reconstruct the measured results.

One natural suggestion to explain the large differences between the measured and calcu-
lated results was that similarly to the point model, in the one-speed space-dependent model
that far, the only reaction the neutrons were supposed to undergo was fission. All other
reactions, such as absorption and scattering, were neglected. Neglecting absorption is fully
justified due to its extremely small cross section at energies of the fission neutrons. On the
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other hand, elastic scattering has a cross section about three to four times as large as that
of fission, depending on the fissile isotope and the neutron energy. In the point model, elas-
tic scattering cannot be taken into account, but a space-dependent theory can account for
scattering. Since scattering changes the direction of the neutrons, it will affect the leakage
multiplication (basically acting as a reflector). Especially in highly multiplicative systems,
close to critical, the presence of scattering can influence the results substantially.

Therefore we extended the model to include elastic scattering. In case of elastic scattering
of neutrons on heavy elements, one can disregards the slight anisotropy and energy loss of
neutrons, this extension is therefore quite straightforward [3]. The quantitative results were
now in much better agreement with the measurements. However, the good agreement was
possible to achieve only by accounting for inelastic scattering in an implicit and heuristic way,
suggested in Ref. [7] for criticality calculations . Namely, instead of using the cross sections
and the induced fission multiplicities at the average energy 2 MeV of source neutrons, all
nuclear data used corresponded to 1 MeV, the average energy of neutrons after one inelastic
scattering event.

Even though by this procedure, the agreement with the measurements was surprisingly
good, this is neither a final or a perfect solution. Instead of emulating the effect of inelastic
scattering by a one-speed theory with a “tuned” energy, the proper energy dependence of
the fisison chain in the item should be taken into account. Also, the agreement achieved in
this particular case between measurements and calculations was good, but not perfect, and
it could also be improved

To this order, in this paper we extend the formalism to include inelastic scattering. This
necessitates also the inclusion of anisotropic scattering, since the angular distribution of
elastically scattered neutrons is slightly anisotropic. Introducing energy dependence requires
the treatment of energy dependent cross sections and scattering functions, as well as energy
dependent fission neutron number factorial moments. In the following the conceptual theory
of multiplicity with energy dependence and inelastic scattering will be given, and a simple
illustration of the effect of the energy dependence is given.

2 General considerations
First we recapitulate the essential formalism of the one-speed theory and its extension to
include elastic scattering. For simplicity, (α, n) reactions will be omitted (corresponding
to pure metallic items) and the formalism will be applied for a solid sphere. Extension to
cylinders or spheres is a mere technicality.

The starting point is a master equation for the generating function g(z| r, µ) of the
single particle induced probability distribution p(n| r, µ) of n neutrons leaving the item by
a starting neutron with coordinates (r, µ) [1, 3]. It was also shown in the cited publications
that due to isotropic emission of neutrons both from spontaneous and induced fission, it is
sufficient to handle only the angularly integrated (“scalar”) generating function g(z| r) , and
its moments. The equation for the scalar generating function reads as

g(z| r) =
z

2

∫ 1

−1

dµ e−`(r,µ) +
1

2

∫ 1

−1

dµ

∫ `(r,µ)

0

ds e−s qf [g(z| r′(s))] . (1)

Here r′(s) is the radial position from r along the direction µ at a path length s, qf (z) =∑∞
k=0 fk z

k is the generating function of the number distribution fk of the induced fission
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neutrons, the quantity in the square brackets being its argument, and `(r, µ) is the distance
to the boundary of the sphere from point r along the direction µ. All distances are in
dimensionless optical units, i.e. in units of the mean free path.

The equations for the first three factorial moments n(r), m(r) and w(r) of the number
of neutrons leaving the item for one single neutron starting from the radial position r and
with isotropic angular distribution read as follows. For the first moment one has

n(r) = n0(r) +
νf,1
2

∫ 1

−1
dµ

∫ `(r,µ)

0
ds e−s n(r′(s)). (2)

with

n0(r) =
1

2

∫ 1

−1

e−`(r,µ) dµ, (3)

νf,1 being the mean number of neutrons emitted in induced fission. For the second moment
one has,

m(r) = A(r) +
νf,1
2

∫ 1

−1
dµ

∫ `(r,µ)

0
ds e−sm(r′(s)) (4)

with
A(r) =

νf,2
2

∫ 1

−1
dµ

∫ `(r,µ)

0
ds e−s n2(r′(s)), (5)

and for the third moment

w(r) = B(r) +
νf,2
2

∫ 1

−1
dµ

∫ `(r,µ)

0
ds e−sw(r′(s)), (6)

where B(r) is defined as

B(r) =
1

2

∫ 1

−1
dµ

∫ `(r,µ)

0
ds e−s

{
νf,3 n

3(r′(s)) + 3 νf,2 n(r′(s))m(r′(s))
}
. (7)

What regards the statistics of the number of neutrons leaving the sample due to a spatially
homogeneously distributed isotropic source event (spontaneous fission), for its generating
function G(z) one has the expressions

G(z) =
3

R3

∫ R

0

r2 qs [g(z| r)] dr, (8)

where qs(z) is the generating function of the number of neutrons per spontaneous fission.
The first moment N (expectation) of the number of neutrons emitted from the item due to
a source emission event is obtained from G(z) as

N =
3 νs,1
R3

∫ R

0

r2 n(r) dr (9)

where νs,1 is the first moment (expectation) of the number of neutrons emitted in a source
event (spontaneous fission). For the second (M) and third (W ) moments one has

M =
3

R3

∫ R

0
r2
{
νs,2 n

2(r) + νs,1m(r)
}

dr (10)
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and

W =
3

R3

∫ R

0
r2
{
νs,3 n

3(r) + 3 νs,2 n(r)m(r) + νs,1w(r)
}

dr, (11)

respectively. It is these formulae which will be compared with their energy dependent coun-
terparts.

3 Accounting for elastic scattering in a one-speed model
Elastic scattering can be simply included into the one-speed transport theory model if the
small energy loss and slight anisotropy of the neutrons scattered elastically on heavy nuclei is
neglected. In that case, scattering can be treated as a fission event resulting in one neutron.
This simply means to replace the probability distribution pf (k) with the number distribution
pr(k) of the neutrons arising from a reaction (either fission or scattering), such as

pr(k) = cf pf (k) + cel δk,1 (12)

where

cf ≡
Σf

ΣT

; cel ≡
Σel

ΣT

and ΣT = Σf + Σel. (13)

This means that the moments νf,i, i = 1, 2, 3 of induced fission have to be replaced by the
moments νr,i of the number of secondaries per reaction:

νr,i = cf νf,i + cel δk,1 (14)

Correspondingly, the optical path has to be scaled by the total cross section, instead of the
fission cross section as in the preceding work.

A comparison between the preliminary results of the MUSIC measurements on the Rocky
Flats shells and the calculations with elastic scattering included [3] showed an improved
agreement, but it was still not satisfactory. The most obvious reason for the disagreement
was that the effect of inelastic scattering was not taken into account. Inelastic scattering
has approximately the same macroscopic cross section as elastic scattering, both of them
about three times as large as that of fission at 2 MeV. Inelastic scattering has the effect that
the mean energy of inelastically collided neutrons will be lower than the source energy, and
at the lower energies, both the ratio of the scattering to fission cross section, as well as the
induced fission multiplicities are different (essentially leading to lower multiplication).

In order to account in a rough way for the presence of inelastic scattering, we followed the
recommendation of Ref. [7], namely to perform the one-speed calculations with cross sections
and fission neutron multiplicities corresponding to 1 MeV. The results of such calculations,
and a comparison with the MUSIC measurements, taken from [3], is shown in Fig. 1.
The calculated results when elastic scattering is not accounted for are also shown. Fig. 1
demonstrates that a one-speed transport model, which accounts for elastic scattering nearly
exactly, and for inelastic scattering in an empirical way, yields good agreement with the
measurements. The Figure also shows that by not accounting for scattering, the difference
between calculations and measurements is much larger.
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Figure 1: Comparison of measured and calculated first, second and third moments of
the number of neutrons emitted from the Rocky Flats Shells for four different outer

radii. In the calculations, the material properties corresponding to those of the
isotopic composition of the Rocky Flats Shells (93.5% enriched 235U) were used at

the neutron energy of 1 MeV

4 Accounting for inelastic scattering
It is clear that, despite the relative good agreement between calculations and experiments,
the approximate way of accounting for elastic scattering, and in particular the empirical way
of accounting for inelastic scattering is not fully satisfactory. In order to describe the effect
of these processes properly, one needs to extend the model to include energy dependence.
This will be described below.

4.1 Single particle induced distributions and moments

We need to introduce the energy dependent cross sections

Σf (E), Σel(E) and Σin(E) (15)

and the total cross section ΣT (E) ≡ Σ(E) as

Σ(E) = Σf (E) + Σel(E) + Σin(E) (16)

as well as the energy dependent fission number distribution pf (n,E). Further, the scattering
densities for both the elastic and inelastic scattering, as well as for the fission process, are
needed:

fel(µ→ µ′, E → E ′), fin(µ→ µ′, E → E ′) and χ(E → E ′) (17)
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Unlike in ordinary transport theory, the elastic and inelastic and fission scattering functions
cannot be combined into one common scattering function, because they have different number
distributions1. Putting it another way, unlike the energy-independent case (Sect. 3), the
elastic (and inelastic) scattering number distributions cannot be accounted for by modifying
the fission neutron number distributions, because they have different scattering functions.

The specific forms of the elastic and inelastic scattering functions are as follows. For the
elastic scattering, assuming energy conservation with scattering on free nuclei with atomic
number A and isotropy in the center of mass system, the scattering function of elastic
scattering can be written as [8]:

fel(µ→ µ′, E → E′) =
∆(E′ − αE)

(1− α)E
δ
(
µ′ − S(E,E′)

)
; E′ ≤ E (18)

with

α =

[
A− 1

A+ 1

]2

and S =
1

2

[
(A+ 1)

√
E′

E
− (A− 1)

√
E

E′

]
(19)

On the other hand, similarly to fission neutrons, the angular distribution of inelastic scat-
tering from heavy nuclei can be regarded isotropic in the laboratory system. Thus,

fin(µ→ µ′, E → E ′) =
1

2
fin(E → E ′); E ′ ≤ E (20)

Because of the separate treatment of the scattering and fission reactions, it is no longer
practical to use optical units, hence the corresponding cross sections will appear in the
equations. In addition, due to the special form (18) of the elastic scattering function, it is
not possible to write down an equation directly to the scalar quantities, one has to keep the
angular form, and calculate the scalar quantities only after the solution is found. By using
(18) and (20) and by performing the angular integrals in each term on the right hand side,
the master equation for the angular, energy dependent generating function will read as

g(z| r, µ, E) = z e−`(r,µ)Σ(E) +

Σel(E)

(1− α)E

∫ `(r,µ)

0
ds e−sΣ(E)

∫ E

αE
dE′ g(z| r′(s), S(E,E′), E′) +

Σin(E)

∫ `(r,µ)

0
ds e−sΣ(E)

∫ E

0
dE′ fin(E → E′) g(z| r′(s), E′) +

Σf (E)

∫ `(r,µ)

0
ds e−sΣ(E) qf

[∫ Emax

0
dE′ χ(E → E′) g(z| r′(s), E′)

]
(21)

where, similarly to the one-speed case,

g(z| r, E) =
1

2

∫ 1

−1

dµ′ g(z| r, µE) (22)

is the “scalar” (angularly integrated) generating function.

1The elastic and inelastic scattering could be combined together, but it would not have advantages,
because then the specific properties of these scattering functions could not be utilized.
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The equations for the factorial moments can be derived from Eq. (21) in the usual way.
The first moment, i.e. mean number of neutrons n(r, µ, E) leaving the item obeys the
equation

n(r, µ, E) = e−`(r,µ)Σ(E) +

Σel(E)

(1− α)E

∫ `(r,µ)

0
ds e−sΣ(E)

∫ E

αE
dE′ n(r′(s), S(E,E′), E′) +

Σin(E)

∫ `(r,µ)

0
ds e−sΣ(E)

∫ E

0
dE′ fin(E → E′)n(r′(s), E′) +

νf,1(E) Σf (E)

∫ `(r,µ)

0
ds e−sΣ(E) [

∫ Emax

0
dE′ χ(E → E′)n(r′(s), E′) ≡

e−`(r,µ)Σ(E) + M̂(r, µ,E)n(r, µ, E)

(23)

where the integral transport operator M̂(r, µ, E) was introduced by the last equality. It is
also indicated that the neutron multiplicities, and hence the factorial moments νf,i of the
induced fission, are now energy dependent.

With the operator M̂(r, µ, E), the equation for the second factorial moment m(r, µ, E) =
〈(n(r, µ, E)((n(r, µ, E)− 1)〉 reads as

m(r, µ, E) = A(r, µ, E) + M̂(r, µ, E)m(r, µ, E) (24)

with A(r, µ, E) already being known from the solution for the first moment:

A(r, µ,E) = νf,2(E) Σf (E)

∫ `(r,µ)

0
ds e−sΣ(E)

[∫
dE′ χ(E → E′)n(r′(s), E′)

]2

(25)

The equation for the third factorial moment w(r, µ, E) can be written down in an analogous
manner as

w(r, µ, E) = B(r, µ, E) + M̂(r, µ, E)w(r, µ, E) (26)

with

B(r, µ,E) = Σf (E)

∫ `(r,µ)

0
ds e−sΣ(E)

{
νf,3(E)

[∫
dE′ χ(E → E′)n(r′(s), E′)

]3

+

3 νf,2(E)

[∫
dE′ χ(E → E′)n(r′(s), E′)

]2 [∫
dE′ χ(E → E′)m(r′(s), E′)

]} (27)

The equations for all moments can be numerically solved with the same collision number
expansion technique as in the previous publications for the simpler cases. Compared to the
one-speed calculations for a sphere, the difference is the appearance of one more parameter,
the energy E in the equations, with one more nested loop of integrals in the collision number
expansion. In principle, in computing effort this is equal with the calculations made for a
cylinder [2], where in addition to the radial position r and the cosine µ of the polar angle,
also the azimuthal angle ϕ appeared.

The bigger challenge will be to incorporate the energy dependent quantities, such as cross
sections, scattering functions, which are only available in tabulated form, and the induced
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fission factorial moments νf,i(E). The precise values of these, or rather the probability
distributions from which these are calculated, are found in the literature with a sparse
spacing in energy (1 MeV). Therefore, most likely approximative analytical formulae will
have to be used for the energy dependent number distributions to calculate the latter with
sufficient fine energy mesh.

4.2 Source emission induced generating function

The generating function G(z) of the number distribution of neutrons leaving the item for a
source event can easily be obtained from the generating function of the single-neutron induced
generating function by quadrature. In the energy dependent case, assuming isotropic angular
distribution of the source neutrons, one needs to account for the energy dependence of the
source neutrons, through the (normalised) energy spectrum χs(E). Hence, in the energy
dependent case one has

G(z) =
1

V

∫
V

dr qs

[∫
g(z |r, E)χs(E) dE

]
(28)

It is easy to show that for the moments N , M and W of G(z), this means that the single
particle induced moments n(r), m(r) and w(r) in the energy dependent case have to be
replaced by their fission energy spectrum weighted integrals when energy dependence is
taken into account. Define the spontaneous fission spectrum weighted single particle induced
factorial moments as

n(r) ≡
∫
n(r, E)χs(E) dE; m(r) ≡

∫
m(r, E)χs(E) dE

and

w(r) ≡
∫
w(r, E)χs(E) dE.

(29)

Then, for a spherical item, we obtain expressions in perfect analogy with those of the one-
speed case, Eqs (9) - (11) as

N =
3 νs,1
R3

∫ R

0

r2 n(r) dr, (30)

M =
3

R3

∫ R

0

r2
{
νs,2 n

2(r) + νs,1m(r)
}

dr (31)

and

W =
3

R3

∫ R

0

r2
{
νs,3 n

3(r) + 3 νs,2 n(r)m(r) + νs,1w(r)
}

dr. (32)

In order to evaluate (30) - (32), one only needs the energy dependent single neutron
induced moments n(r, E), m(r, E) and w(r, E), as well as the spontaneous fission energy
spectrum χs(E).
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5 Results
We illustrate the use of (30) - (32) in a simple example. We consider a spherical 239Pu
item, with a spontaneous fission source of 240Pu. However, instead of using the true energy
dependent single-particle induced moments, we perform calculations of five one-speed cases
at the energies E = 0.5, 1, 2, 3 and 4 MeV, with elastic scattering included without energy
loss of the neutrons, as it was described in Section 3. These energies cover the significant
part of the 240Pu spectrum reasonably well. Inelastic scattering is not included. There is no
coupling between the one-speed equations for different energies, the only circumstance which
distinguishes the equations is that each has its own fission and scattering cross section at the
particular energy selected, as well as the induced fission multiplicities at the same energies.
The cross sections were taken from the ENDF/B-VIII library, whereas the 240Pu spectrum
and the energy dependent factorial moments νf,i(E) of induced fission were taken from runs
with MCNPX-PoliMi [9].

The energy averaged values of the single particle induced factorial moments n(r), m(r)
and w(r) of Eq. (29) were calculated by a simple weighted average with weights

ci =
χs(Ei)∑5
i=1 χs(Ei)

(33)

and these were then used in (30) - (32) to calculate the factorial moments of the source event
induced emission. Two different spherical items were considered, one with R = 2.5 cm, and
another one with R = 3.2 cm. The results are shown in Table 1.

R = 2.5 cm R =3.2 cm
E [MeV] N M W N M W

0.5 3.31 19.45 243.9 4.10 42.33 1081
1 3.49 23.53 353.5 4.43 55.26 1757
2 4.00 39.41 953.1 5.72 136.6 9057
3 4.11 44.22 1204 6.07 172.8 13955
4 4.19 48.72 1465.4 6.36 208.5 19709

Average 3.67 29.87 620.2 4.94 92.9 5682

Table 1: Factorial moments for five one-speed calculations, and the energy-averaged
moments according to Eqs (30) - (32) for two different item sizes.

It is seen that the factorial moments calculated by accounting for the energy distribution
of the spontaneous fission neutrons in an approximate, but still representative way, lie be-
tween those of the one speed calculations with 1 and 2 MeV, respectively, for both item sizes
(coloured with yellow in the Table). Although for different reasons, this points towards the
same conclusion as was stated in Refs [3] and [7], that when performing one-speed calcula-
tions, one gets results closer to the real one if instead of the average neutron energy of the
fission spectrum, 2 MeV, one uses data corresponding to a lower energy. The main reason
is of course the presence of inelastic scattering, which so far has not been included in our
quantitative work. The calculations with full energy dependence are ongoing.
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6 Conclusions

The general theory of the multiplicity moments in a full space-angle-energy dependent set-
ting was presented, which is suitable to incorporate elastic and inelastic scattering with
anisotropic scattering. Work is going on to obtain quantitative solutions in a full space-
energy-angle-dependent description, where both elastic and inelastic scattering are included
without simplifications. The model will supply quantitative result of sufficient high fidelity,
that it will be possible to use it to generate training data for an artificial neural network
(ANN) to unfold the parameters of an unknown item, in particular both the 239Pu and the
240Pu content simultaneously. Work is going on in this directions, even if at present only at
the level of one-speed theory [10]
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