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ABSTRACT 

 

The probability of interruption (PI) offered by physical protection systems (PPS) at nuclear 

facilities against an adversary attacking the facility was assessed by a modified Monte-Carlo-based 

multi-path adversary analysis method. Based on an adversary sequence diagram (ASD), a Monte 

Carlo script was developed to perform a multi-path adversary attach analysis. The analysis of 

adversary interruption used three types of distributions (Gaussian, Poisson, and Uniform) to 

determine the differences in choosing the probabilities of detection (PD) provided by the PPS 

elements. Compared to the deterministic approach used by the estimate adversary sequence 

interruption (EASI) model, the multi-path analysis approach presented in this study was not limited 

to the adversary's single path analysis. The PPS performance is not accurately represented by the 

EASI model because uncertainty cannot be estimated. Furthermore, unlike the EASI model, this 

model did not fix the critical detection point (CDP) at the same protection layer for all the attack 

scenarios. The CDP was moved to enable the analysis of the types of actions adversaries take to 

achieve their goals in response to their perceptions of the PPS. Several types of adversary actions, 

including random, rushing, covert, deep penetration, and most vulnerable path (MVP) were 

analyzed. According to the path selected by the adversary, the script developed was able to move the 

CDP. PI values and their associated uncertainties were more realistic because of this type of CDP 

movements. By eliminating the corresponding detection or delay elements of the PPS for the chosen 

adversary path, the threats from insiders were also modeled in the code. The script was 

integrated with the price of each PPS element, such as sensors and cameras present in the PPS. The 

relationship between cost and PI was examined by taking into account the unit price of the detection 

elements. Following the sampling of PD values from three different distributions, a PI value 

distribution was generated, and their uncertainties were compared for each sampling strategy, which 

were found to be not largely different. 

 

1. INTRODUCTION 

 

Throughout history, nuclear power plants (NPPs) and other nuclear fuel cycle facilities have 

drawn the attention of terrorists, criminals, and protestors [1]. To protect against adversaries' 

malicious acts, NPPs and facilities handling SNM need a robust physical protection system 

(PPS). The PPS design aspects have been a significant issue for years for the International Atomic 

Energy Agency (IAEA). The IAEA has published guidance documents on PPS design for nuclear 

facilities [2]. Sandia National Laboratories (SNL) developed the estimate adversary sequence 

interruption (EASI) model, which has been used in many PPS evaluations and improvement 



studies. Under two sabotage scenarios, Wadoud et al. calculated the PI value by using the single-path 

EASI model [3]. Studies have been conducted to improve or use the EASI model to analyze the 

effectiveness of PPS regarding insider threats. Estimate and prevention of insider threats (EPIT) is a 

novel approach recommended by Zou et al. to estimate insider threat behaviors and their impact on 

security element capabilities [4]. The insider-outsider collusion threat was considered by Hawila et 

al. when evaluating the vulnerability of a reactor pump [5]. Setiawan et al. presented a new stochastic 

computational tool, multi-path analysis of PPS (MAPPS), which can be used to analyze the 

effectiveness of the PPS [6]. The purpose of a PPS is to protect assets and facilities from theft, 

sabotage, and other malicious attacks by adversaries by integrating equipment, procedures, and 

personnel. To prevent an adversary from succeeding, a robust PPS must include deterrence, detection, 

delay, response, and recovery functions [7]. A PPS should consider insider threats since insiders have 

access, authority, and knowledge, which they themselves could use to perform a malicious act or 

assist an outside adversary.  The primary functions of a PPS are to stop adversary intrusion, detect 

it, delay the adversary action (after it occurs and is detected), and respond to neutralize the adversary. 

The PPS performs these functions by integrating various protection elements. The effectiveness of 

PPS depends on the probability of detection (PD) and delay time (td) by its protection elements. The 

PPS should be capable of slowing down the adversary intrusions and their progress toward the target 

by utilizing delay protection elements (for example, locks). The td of a delay protection element 

determines its capability. As a final component of the PPS, the response force is composed of trained 

security personnel and the necessary equipment, such as weapons, body protection, transportation, 

and communication. The objective of a response force is to intercept and neutralize the 

intruders. After generating a genuine intrusion detection alarm, the probability of interrupting the 

adversary (PI) is defined as the likelihood of interrupting the adversary. This is the likelihood that the 

response force will be able to neutralize an adversary based on its probability of neutralization 

(PN). Utilizing Equation 1, the overall effectiveness (PE) of a PPS can be calculated as the product of 

PI and PN. The value of PN refers to the likelihood that the response force will successfully neutralize 

the adversary once the interruption has been made.  Calculation of PN requires data on the response 

force, such as the type and number of guards, and weapons owned by the guards. Only PI values of a 

PPS were assessed in this study. 

 
𝑃𝐸 = 𝑃𝐼 × 𝑃𝑁                                                                       (1) 

 
2. ESTIMATE OF ADVERSARY SEQUENCE INTERRUPTION MODEL (EASI) 

 
The EASI method, created by SNL, is a mathematical model that is used to calculate the PI of 

a PPS. As a result of the EASI model, the response force should be notified in a timely manner if an 

adversary attempts to steal material from the facility or sabotage it in order to intercept and neutralize 

their malicious actions [8]. It is important to note that the EASI model is divided into three sections. In 

the first section, PD values along adversary paths are used to calculate the detection function, and the 

second section is used to calculate the delay function based on the delay time of the respective 

protection elements of the PPS. During the calculation of the delay function, each of the protection 

layers along a potential adversary's path is represented by several time delay elements. There are a 

number of layers of protection along an adversary's path, and the cumulative delay time on each of 

those layers is taken into account. In the third section, the response function calculation, the values 

from the first two calculations are brought together to compute the total PI. In the PPS, the probability 



of alarm communication (PC) is the probability that the assessed alarm will be communicated 

correctly by the alarm assessor to the response force, which is assumed to be constant for all elements 

of detection in the EASI model. However, this value is not fixed and is sampled using a Poisson 

distribution.   

 

3. PPS DESIGN AND ADVERSARY SEQUENCE DIAGRAM (ASD) OF THE FACILITY 

 

The PI value was evaluated using a hypothetical facility named National Atomic Research 

Institute (NARI). At NARI, the same PPS design and its modification were used [9, 10]. Figure 1 

shows the layout of a hypothetical facility. 

 
Figure 1. The layout of the NARI facility. 

Facility descriptions and layout were used to derive the facility's ASD. As shown in Figure 2, 

the ASD illustrates the adversary's possible path to the target from the off-site area. 

 

 
Figure 2. The Adversary Sequence Diagram (ASD) of a hypothetical facility. 



Each path option must contain at least four sets of information. The two variables are the 

detection probability (PD) and the delay time (td) provided by a protection element. Thirdly, the 

detection location of the adversary, such as at the beginning (B), the middle (M), or at the end (E) of 

the protection layer. Lastly, the type of delay provided by a component gives additional insight into 

the delay feature of the path element. After the ASD was created, an Excel sheet file was 

prepared. This Excel file was used to develop the PI estimation script. Designer is able to modify the 

input file to sample PD values using Gaussian, Poisson, and Uniform distributions. The probability of 

alarm communication (PC) value was calculated by SNL based on its system design evaluations. For 

each iteration, the PC (0.95) value is sampled using a Poisson distribution. It takes exactly 700 seconds 

for the response force to interrupt the adversary. The standard deviation of the response force time 

(RFT) can be estimated at 30% of the mean based on tests conducted at SNL [7]. Based on the user's 

input regarding the adversary's strategy and the insider's intervention, the PI estimation script 

simulates numerous multi-path analyses. In the script, the adversary path is constructed using the 

Monte Carlo method, the insider intervention is modeled for every simulation, and the PI value is 

calculated for each simulation, as shown in Figure 3. Five adversary strategies are developed in the 

script, including the random strategy, the rushing strategy, the covert strategy, the deep penetration 

strategy, and the MVP strategy. Each strategy has a different approach based on the adversary’s 

perception. The random strategy assumes that the adversary has no strategy for penetrating the 

facility. The rushing strategy is where the adversary does not pay attention to the detection capability 

of the PPS. The covert strategy involves disregarding the delay elements of the PPS. In a deep 

penetration strategy, the adversary is knowledgeable of the facility's PPS in depth. The deep 

penetration strategy combines rushing and covert strategies. MVP is a strategy in which the adversary 

has a complete understanding of the layout, the PPS, and the CDP of the facility.  

 

 
Figure 3. Process flowchart for adversary path and insider intervention modeling. 

 

In order to estimate the uncertainty and fluctuation of detection performance against an 

adversary's intrusion, the script samples the PD value for each protection layer using Normal, Poisson, 

and Uniform distributions, as shown in Figure 4.  



 
Figure 4. Distributions with PD=0.9 

As the last detection point in the adversary's path, a critical detection point (CDP) occurs when 

the adversary still has time to complete the mission before the response force arrives. Based on fixed 

CDP, most vulnerable path (MVP) is the adversary path with the lowest PPS effectiveness. An EASI 

model was implemented with Moving Critical Detection Points (mCDP) to use in every iteration.  

4. RESUTS AND CONCLUSION 

In Table 1, the PI mean and standard deviation values are shown for 100,000 simulations of 

different combinations of the adversary's strategy and insider's intervention. According to the results, 

the lowest values of PI were found for the most vulnerable path (MVP) strategy for all types of insider 

involvement. Results are similar for deep penetration and covert strategies. Random and rushing 

strategies, on the other hand, have the highest PI values, and there is only a 0.5% difference between 

them. PI values reduced more when insider intervention is applied to the delay function than when 

insider intervention is applied to the detection function. In the EASI model, the delay element plays 

an important role.  

Table 1. PI calculation simulation results from a combination of adversary's strategy and 

insider's intervention using a Normal distribution at NARI facility. 

 
PI mean value and 

standard deviation 
Random Rushing Covert  

Deep 

Penetration MVP 

No Insider 0.86±0.07 0.86±0.07 0.85±0.06 0.85±0.06 0.83±0.06 

Pdet(x)=0 0.85±0.07 0.85±0.07 0.84±0.07 0.84±0.07 0.81±0.07 

Tdel(x)=0 0.81±0.09 0.81±0.08 0.80±0.09 0.79±0.09 0.77±0.06 

Pdet(x)&Tdel(x)=0 0.79±0.09 0.79±0.08 0.78±0.09 0.76±0.08 0.73±0.06 

Using a Poisson distribution, Table 2 shows the mean and standard deviation of the PI values 

for 100,000 simulations of the adversary's strategy and the insider's intervention. For all types of 

insider involvement within MVP strategy, the lowest values of PI were observed. It is evident that 

insider involvement affects PI values. PI values for simulations are lower when there is more insider 

involvement. At the detection and delay elements, there is a 10% difference between strategies with 

no insiders and those with insiders.  

Uniform Poisson Normal 



Table 2. PI calculation simulation results from a combination of adversary's strategy and 

insider's intervention using a Poisson distribution at NARI facility. 

 

PI mean value and 

standard deviation 
Random Rushing Covert  

Deep 

Penetration MVP 

No Insider 0.86±0.07 0.86±0.06 0.85±0.06 0.84±0.06 0.83±0.06 

Pdet(x)=0 0.84±0.07 0.85±0.07 0.84±0.07 0.83±0.07 0.81±0.07 

Tdel(x)=0 0.85±0.09 0.81±0.08 0.80±0.09 0.78±0.09 0.77±0.06 

Pdet(x)&Tdel(x)=0 0.78±0.09 0.78±0.08 0.78±0.09 0.76±0.08 0.73±0.06 

In Table 3, the PI mean and standard deviation values for 100,000 simulations involving 

different combinations of adversary strategy and insider intervention are presented. Figure 4 shows 

that although sampled PD values have a different distribution, results from Uniform distributions show 

a similar trend in PI values to those from Normal and Poisson distributions. 

Table 3. PI calculation simulation results from a combination of adversary's strategy and 

insider's intervention using a Uniform distribution at NARI facility. 

 

PI mean value and 

standard deviation 
Random Rushing Covert  

Deep 

Penetration MVP 

No Insider 0.86±0.07 0.86±0.07 0.86±0.07 0.85±0.06 0.84±0.06 

Pdet(x)=0 0.85±0.08 0.85±0.07 0.84±0.07 0.83±0.07 0.81±0.07 

Tdel(x)=0 0.81±0.09 0.81±0.08 0.80±0.09 0.79±0.09 0.77±0.06 

Pdet(x)&Tdel(x)=0 0.79±0.09 0.80±0.08 0.79±0.09 0.77±0.08 0.73±0.06 

Each protection layer contains several detection elements. The PPS used in this study was 

designed for the facility using CCTV cameras, seismic sensors, infrared sensors, balanced magnetic 

switches (BMS), badge-PINs, vibration sensors, exchange badge-PINs, and multiple complementary 

sensors. On the supplier's website, the prices of nuclear-grade detection elements were found, and 

their unit price was multiplied by 5 to compensate for nuclear grade. These prices were used to 

understand the relationship between the total cost of detection elements and PI mean values. Figure 5 

shows the relationship between total cost and PI values for a random strategy without insider 

intervention for Normal distribution. There were five points selected from the distribution, indicating 

that there is no linear relationship between the total cost and the PI value. A PI value of 0.98 can be 

obtained for about $19,000, as shown in Figure 5. Designers can obtain 0.98 PI by spending about 

$28,000. If the designer spends $28,000 units, there is the possibility of getting a PI value of 

0.6. Other adversary strategies have the same cost-PI relationship. In other words, an increase in the 

amount of money does not necessarily equate to an increase in the effectiveness of PPS. The PPS 

design should be optimized in accordance with the unit price and probability of detection value of the 

detection elements.  



 
Figure 5. The relationship between the total cost and PI values 

To simulate all strategies, PD values were sampled in the multi-path analysis. A Normal, 

Poisson, and Uniform distribution was used to sample PD values to calculate PI. Based on simulations, 

however, different distributions do not significantly affect PI mean values. According to the 

relationship between the cost of detection elements and the PI value, a higher cost does not increase 

the PI value. There is no linear relationship between these parameters. 
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