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Abstract: Modern pebble-bed reactor concepts employing TRISO-based pebbles involve the 

circulation of thousands of such pebbles through the reactor core. There is currently no method for 

the tagging, identification, and tracking of individual TRISO pebbles as they enter and exit the 

reactor core. Methods for uniquely identifying TRISO pebbles would significantly assist nuclear 

material accountancy and safeguards as each individual pebble could be tracked within a TRISO 

pebble reactor. This paper presents progress in demonstrating the use of computer vision software 

combined with machine learning approaches (Convolutional Neural Networks) for identifying 

TRISO pebbles from x-ray radiographs, based on the unique distribution of TRISO particles within 

each pebble. To identify a pebble an x-ray radiograph is compared with a library of reference 

radiographs of a set of pebbles. The matching performance is affected by the orientation of the 

radiographed TRISO pebble compared to the reference radiograph. The orientation can be 

specified by the off-axis and on-axis rotation angles which are defined by the radiography source 

and detector setup. Translational shifts of the pebble relative to the axis must also be accounted for. 

Significant progress has been made in the use of computer vision software for identifying any 

orientation of a TRISO pebble, when including an embedded reference marker, in a given acquired 

x-ray radiograph. In parallel, complementary machine learning methods are being developed to 

determine the orientation and to identify the pebble. This hybrid combination of methods can 

increase the accuracy of the identification. The potential implementation of this method for 

safeguarding TRISO pebble reactors is also discussed. 

Introduction 

Pebble bed nuclear reactors consist of hundreds of thousands of individual pebbles in a single 

reactor [1]. Being able to uniquely identify individual pebbles is crucial for nuclear safeguards and 

fuel accountancy purposes. The recognition process must be automated and operate without 

significant human oversight. One possible option is to take an x-ray image of the pebbles as they 

exit the reactor. As the pebble consists of a graphite matrix containing the fuel particles, the fuel 

particles cast shadows in the x-ray image compared to the relatively transparent graphite matrix. 

The distribution of the fuel particles within the pebble is essentially unique to that pebble as the 

probability of two pebbles having particles in the same positions is extremely small. Therefore the 

pebble can be identified by the positions of the shadows in the x-ray image. Previous approaches 

using machine learning techniques with this method showed good identification performance 

provided the pebble is orientated in the same way as the reference image [2]. However, relatively 

small shifts from the reference library images resulted in poor performance. Other techniques have 

used x-ray computed tomography (XCT) scans to reconstruct the 3D positions of the fuel particles 

within the pebble [3]. Since the 3D positions of the fuel particle are used, the XCT technique is 
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much less sensitive to the orientation of the pebble compared to the reference image. However, the 

extended time required to perform an XCT scan may result in operational throughput issues during 

reactor operation. In this paper we explore the use of computer vision techniques to identify 

individual TRISO pebbles as they pass through the reactor by comparing x-ray scans of them to a 

set of reference x-ray images in a library. A Geant4 simulation has been developed to produce a 

library of reference images and computer vision techniques to identify pebbles based on the 

simulation results that have been developed. These simulations were used to evaluate the impact of 

systematic effects, such as rotations of the pebble, on the performance of the identification 

algorithm. Potential techniques to mitigate the impact of the systematic effects using further 

computer vision techniques or machine learning techniques have been explored and are also 

discussed below.  

Simulation of TRISO Radiographs using Geant4 

The Geant4 simulation toolkit [4][5][6] was used to produce the simulated radiographs of the 

TRISO pebbles. An image of the simulation of the setup is shown in Figure 1. 

 

Figure 1: An image of the Geant4 simulation of the x-ray imaging setup. The x-rays (green lines) 

are generated from a point in a cone towards the red x-ray screen. The blue sphere is the TRISO 

pebble being imaged. Only a limited number of x-rays have been simulated for illustrative purposes.  

Individual fuel pebbles with a layered structure as described in [2] were placed randomly within a 

graphite sphere. Monoenergetic 150 keV x-rays were generated in a cone towards an x-ray screeni, 

any x-rays which reached the screen were binned in a histogram based on their hit position. The 

binning of the histogram reflected the resolution of the x-ray detector screen. 

Several parameters in the simulation are tuneable, including the resolution of the x-ray screen, the 

objective lens used in the x-ray device, the opening angle of the x-ray beam and the position and 

orientation of the TRISO pebble. The orientation of the pebble is defined by two angles; the on axis 
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rotation and the off axis rotation. The on-axis rotation refers to rotations of the pebble about the 

beam axis (the x-axis in Figure 1). The off-axis rotations refer to rotations about an axis 

perpendicular to the beam direction, (the y-axis in Figure 1). Each individual TRISO pebble is 

defined by the seed for the random number generator used to position the fuel particles within the 

pebble. 

The parameters of the geometry used in the simulations shown in the following section are listed in 

Table 1. These parameters were selected to match the setup of an x-ray imaging device at Canadian 

Nuclear Laboratories as closely as possible. In order to allow for a relatively fast simulation the 

resolution of the screen was reduced to 512 by 512 pixels which requires less statistics. 

Table 1: The simulation parameters used to generate the x-ray images. 

Parameter Value 

TRISO sphere radius (mm) 25 

Number of particles in pebble 10000 

Distance from centre of pebble to 

objective (mm) 

105  

X-ray source distance to pebble centre 

(mm) 

85 

Beam angle (Degrees) 15 

Objective magnification 0.4x 

Number of pixels per linear dimension 512 

Pixel size (um) 108 

Number of x-rays 107 

A simulation of 107 x-raysii incident took 25-35 minutes to simulate on a single core. The 

histograms were converted to bitmap images representing the x-ray radiographs, one of these 

images is shown below 



153-120000-CONF-001906 R0  UNRESTRICTED 

(a) (b)  

Figure 2: (a) The radiograph of a TRISO pebble produced by the Geant4 simulation using the 

parameters listed in Table 1. (b) An image of a simulated TRISO pebble with a reference particle 

(highlighted with a red circle). 

Computer Vision Techniques to Identify TRISO Pebbles 

The OpenCV library [7] was used to provide the computer vision tools to process these images. To 

identify a TRISO pebble based on an x-ray imaging, a radiograph image library of all of the pebbles 

is first built. The library of images is then used to find a match with the TRISO pebble exiting the 

reactor and being imaged. This algorithm is broadly broken down into three stages: feature 

extraction, feature matching and determination of the transform on the TRISO pebble.  

The feature matching was performed by the ORB (Orientated FAST [Features from Accelerated 

Segment Test] and Rotated BRIEF [Binary Robust Independent Elementary Features]) feature 

detector [8]. A feature is a region of an image which is distinct, i.e. one would be able to easily 

identify the feature in the larger image, and often features are identified at corners of shapes.  

Once all the features have been extracted from the library of reference images and the test image; 

the features from the test image can be compared to the features in each of the reference images. A 

comparison between each pair of features in the test and a reference image is evaluated. To 

determine if a match is a good match, the Lowes ratio test is used [9]: a good match is defined as 

one which matches much better than all the other matches. Matching is often obscured due to 

random noise. For the following studies, a ratio of 0.75 was used, i.e. the best match Hamming 

distance (measuring the number of bit substitutions required for a match [10]) must be at least 0.75 

of the second best match distance.  

The final stage of the calculation is the determination of the transform from one image to another. 

The transform is defined by the homography matrix [11] which is a three by three matrix defining 

the mapping of pixels from the original image A=(x,y,1) to a new image B=(x’,y’,1). In the 
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presence of only on axis rotations one would expect the upper left 2x2 submatrix of the 

homography matrix to look similar to a 2D rotation matrix.  

The construction of the homography matrix is done via the RANSAC (Random Sample Consensus) 

algorithm [12]. The algorithm takes the positions of the well-matched features in both images and 

fits the parameters of the homography matrix to them. The behaviour of the algorithm is similar to 

that of a χ2 fit although it is much more resilient to outliers from incorrectly matched features.  

An example of using these functions in the OpenCV library can be found in [13]. 

The matching of the same pebble at a different orientation is shown in Figure 3. Each individual 

line represents a pair of well-matched keypoints and the green line is the edge of a square 

representing the transform from the reference image to the test image. As only an on-axis rotation 

has been applied to the test image, the homography matrix is essentially just a rotation. No scale or 

shear is applied to the image. 

 

Figure 3: The matching of the same pebble with an on-axis rotation. The colored lines represent 

good matches between the features in both images. The green box represents the transform from the 

reference image (left) to the input image (right) 

The performance of the matching algorithm when two different pebbles are attempted to be 

matched is shown in Figure 4. In comparison with Figure 3, there are much fewer matched 

keypoints, and furthermore they do not match in a coherent way. The homography matrix produced 

by the positions of the matched features shows significant scaling and shear which is physically 

impossible.  
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Figure 4: The matching of two different pebbles  

Performance of the Algorithm and Systematic Effects 

The performance of the algorithm under on-axis rotations is shown in Figure 5(a). The different 

pebbles dataset and the same pebble dataset each contain 100 images. When comparing the two 

datasets a total of 10,000 comparisons can be made. When comparing the same pebble dataset to 

itself a total of 4950 comparisons can be made. For the same pebble the number of well-matched 

features is on average 100 and ranges from ~50 to almost 200. In contrast when comparing the 

different pebbles to this dataset less than 10 well matched features are identified. The large 

separation in the number of matched features indicates that on axis rotations have little effect on the 

matching capability of the algorithm and it is incredibly unlikely that a pebble will be misidentified 

as another.  

(a)  (b)  

Figure 5: (a) A histogram of the number of matched features for simulations of the same pebble 

with random on-axis rotations and different pebbles. (b) The number of matched features as a 

function of off-axis rotation. 
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Simulations of the same pebble with various off axis rotations were compared to the on-axis 

rotation dataset. The results of this comparison can be seen in Figure 5(b). The number of keypoints 

rapidly drops off with off-axis rotation angle: at two degrees only 20 features are matched, and 

beyond approximately four degrees the matching performance is equal to that of different pebbles 

In other words, it is impossible to identify pebbles if their orientation is off from the reference 

image by more than 4 degrees.  

Orientating the Pebble by Inserting a Reference Particle 

The current image matching code is insensitive to on-axis rotations of the pebble, however off-axis 

rotations beyond a few degrees pose a significant problem for identifying the pebble. As the 

spherical pebbles can exit the reactor in any orientation, it is very unlikely that they will be lined up 

with any of the reference images and any attempts at identifying the pebble will be unsuccessful 

unless the pebble is orientated before the matching takes place. One possible option to orientate the 

pebble is the addition of a reference particle to the pebble. The reference particle would be distinct 

in size from the fuel particles in the pebble and provide information on the orientation of the pebble 

based on its size and position. The reference particle was chosen to be made of Tungsten, with a 

diameter of 1 mm, and an offset of 1 cm from the center of the pebble. An example of a simulated 

radiograph with a reference particle can be seen in Figure 2(b). 

Two approaches were taken to determine the orientation of the pebble. The first uses standard 

computer vision tools to find the position and size of the reference particles shadow in the image 

whereas the second used machine learning techniques to determine the orientation of the pebble. 

Orientating the pebble using computer vision techniques  

The computer vision procedure uses two steps to determine the orientation of the pebble. The first is 

the determination of the position and size of the reference shadow in the image via template 

matching. The second stage is the transform from the size and position of the best matched template 

to the off axis rotation of the pebble. 

An example of the matching is shown in Figure 6(a). The green circle is the region where the 

template matching occurs inside, it is determined by the maximum possible offset of the reference 

particle shadow in the image. The blue circle is the best matching template. It should be noted that 

the resolution of the image had to be increased to 2048x2048 pixels and the number of x-rays 

incident on the pebble had to be increased to 109. Whilst this significantly increased the runtimes of 

the simulations, this is still significantly less than the number of x-rays used in a real world scan of 

a pebble.  



153-120000-CONF-001906 R0  UNRESTRICTED 

(a) (b)  

Figure 6: (a) Example of the template matching algorithm used to find the position of reference 

particle in the image and determine the orientation of the pebble. (b) The true off-axis rotation 

angle compared to the calculated off-axis rotation using the template matching algorithm. Points 

labelled Wrong Quad were deduced to be in the incorrect quadrant (i.e. the true off-axis rotation is 

greater than 90 degrees but the fitted off-axis rotation is less than 90 degrees) 

The off axis rotation can then be determined geometrically using the position and the size of the 

shadow cast by the reference particle.  

The matching performance is shown in Figure 6(b). The code produces highly accurate fits up to 

approximately 60 degrees. Beyond this, the code begins to underestimate. The code has incredibly 

poor performance at determining identifying angles beyond 90 degrees and is strongly biased 

towards smaller off-axis rotations. The reason for this is thought to be due to the overlap between 

the shadows due to the fuel particles and the reference particle as the overlap may make the shadow 

appear larger than it actually is and therefore the larger templates (corresponding to the smaller off 

axis angles) fit better resulting in a significant under estimation of the off axis rotation. Further 

work is underway supplementing these x-ray images with others in order to more accurately 

determine the orientation of the pebble.  

Orientating the pebble using machine learning techniques 

The same Geant4 simulations used to test the computer vision algorithms were also used to train a 

neural network to orientate the pebble based on the x-ray images of the pebbles with a reference 

particle inserted. The dataset consisted of 1200 images of 120 unique pebbles where 10 different 

orientations of each pebble were simulated. The entire dataset was divided into training, validation 

and test datasets. The training set consisted of the images of 80 of the pebbles. Both the validation 

and test datasets contained the images of 20 pebbles each. A supervised learning technique was 

used, where the input is the simulated x-ray image and the target is the off-axis or on-axis rotations 

known from the simulation inputs. The neural network architecture in both cases was a standard 

ResNet18 network, followed by two fully connected layers to predict either the off-axis or on-axis 

angle, a single scalar output.  
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The performance of the neural network after 200 epochs on the test dataset is shown in Figure 7. 

The network performs well at identifying the on axis rotations of the pebble. Most points lie near to 

the y = x dashed black line, meaning that the predictions are nearly equal to the actual values for 

most images. The images where the errors are larger correspond to those where the off axis rotation 

is near to 0 or 180°, when the reference particle is near to the centre of the image, no matter what 

the on axis rotation is. The performance for the off axis rotations is less accurate especially for 

angles close to 90°. For these, the predictions lie close to the red dotted line y = 180° - x. The 

reference particle appears in nearly the same position on the x-ray image for off-axis angles of x and 

180°- x, although the intensity may be different. Further work is in progress, training the neural 

network on higher resolution images with a higher number of simulated x-rays to see if the 

performance can be improved.  

(a) (b)  

Figure 7: The performance of the trained neural net on identifying the (a) on-axis and (b) off-axis 

rotations for the images in the validation dataset. 

Conclusions 

The performance of a standard computer vision algorithm has been investigated when matching x-

ray images of TRISO pebbles to a library of pebbles. The algorithm showed good matching 

performance provided that the “off-axis” rotation is close to that of the reference image. The 

method is unaffected by “on-axis” rotations of the pebble. The algorithm was first tested on 

simulated radiographs produced using the Geant4 toolkit. These algorithms have the advantage over 

machine learning techniques described in [2] as they do not require extensive training.  

Work is underway to orientate the pebble by inserting a Tungsten reference particle into the pebble. 

The addition of the reference particle introduces an additional shadow into the x-ray radiograph. 

The orientation of the pebble can then be determined by the position and size of the shadow in the 

image. Two approaches are being used. The first uses standard computer vision techniques, whereas 

the second uses a machine learning approach. Additional work investigating the addition of a 
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second scan of the image zoomed in on the reference particle has also commenced. It is hoped that 

the additional image will provide further information such that the pebble can be re-orientated more 

accurately and the matching algorithms can be applied successfully.  
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