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ABSTRACT 

IAEA safeguards experts use detection probability (DP) as the primary effectiveness metric for 

nuclear material inventory and flow verification activities. The DP is calculated over a spectrum of 

diversion scenarios (from a few items with gross defects to a large number of items with bias defects), 

and the worst-case (lowest) DP is reported. Deterministic models using statistical distributions are 

generally used to compute achieved DP for individual nuclear material strata to assess the 

effectiveness of the IAEA verification inspections. The models get involved as the total number of 

defect types in the multi-defect sample space increases. The model must first calculate the item 

selection probability as well as the identification probability at each step in each stratum. Once done, 

the model then aggregates the DP from each stratum to calculate an aggregate detection probability 

(ADP) for the entire facility. The model must consider the broad range of ways in which material 

could be diverted within the facility to add up to that total and determine the minimum ADP over all 

possible diversion strategies. The stochastic approach to simulating inspection of items in a nuclear 

facility involves random selection of items containing nuclear material and predicting the results of 

measurements for these samples. Stochastic methods offer greater flexibility to model scenario 

development to simulate different diversion strategies and measurement characteristics. Stochastic 

methods rely on multiple simulations for each scenario to generate a distribution of DP values to 

compute the average and the uncertainty. A critical attribute of stochastic methods for such an 

application is a rigorous analysis of convergence (in terms of number of stochastic “trials”) and error, 

or precision in the estimated DP. This paper describes the method and its application to international 

safeguards inspection performance evaluation. 

   

INTRODUCTION 

In IAEA nuclear safeguards and inspections, a state is a collection of facilities, a facility is a collection 

of strata and a stratum is a collection of items and batches. Diversion strategies at stratum level 

involve different ways of acquiring the goal material from the items or batches and detection strategies 

involve different selection and identification procedures the inspectors perform to identify the 

defected items. The Defect detection probability (DP) is considered as a metric in quantifying the 

effectiveness of various detection strategies on the stratum which was put through specific limiting 

case diversion strategies [1 - 3]. At facility or state level, the diversion strategies involve different ways 

of splitting the total goal diversion amount into total number of strata and acquiring the stratum 

specific goal amounts using the stratum specific diversion strategies which when inspected will result 

in stratum specific DPs for each stratum which will be aggregated to yield a facility level detection 

probability metric using event independence principle. Among all possible ways or combinations of 



splitting the total goal amount among existing strata there exists one combination which poses 

maximum proliferation risk yielding minimum aggregate detection probability (Min ADP). Thus, 

Min ADP is used as limiting case metric to evaluate the combined and overall effectiveness of stratum 

specific detection strategies at facility or state levels. 

Deterministic models [1,2] use statistical distributions, like multi-variate hypergeometric distributions 

for computing selection probabilities and normal, step distributions for computing identification 

probabilities, in the quest to compute DP for individual nuclear material stratum to assess the 

effectiveness of the IAEA verifications employed on the stratum which was subjected to diversion 

strategy. Developing computational algorithms for multi stratum facilities, such as enrichment and 

reprocessing, with multi-defect sample space of items/batches to compute the DPs in individual 

stratum become exceedingly complex when approached deterministically. The solution gets more 

involved as the total number of defect types in the multi-defect sample space increases. The model 

must identify all possible relevant defect outcomes and calculate the item selection probability as well 

as the identification probability at each outcome to get the overall DP. So far there is no single 

overarching model that can compute DPs when a stratum is subjected to wide range of diversion and 

detection strategies, not to mention the task of identifying all possible outcomes to compute selection 

probabilities is by itself computationally expensive.  As such the inspection verification problem 

which has randomness involved in the item selection process is ideally suited for a stochastic approach. 

This involves repeating a series of random selections of items from the set of all items in the stratum, 

followed by measurements of the selected items. For each simulation or trial, a DP value (the 

outcome) is calculated. Through large number of trials, a distribution of DP values (the stochastic 

solutions) are obtained when averaged shall yield required Detection probability (DP) for the 

specified inspection campaign data. Since stochastic process is random there is an error and 

uncertainty associated with the result and is depended on the total number of trials. A set of statistical 

checks must be performed to evaluate convergence, accuracy and precision of the computed results. 

Similarly, all the stratum level DP curves thus produced by stochastic model with their associated 

errors when in turn aggregated to facility level causes the errors to propagate to yield final Aggregate 

Detection Probability value (ADP) with its own error accumulated from all individual stratum level 

errors. This paper will describe the statistical DP Error Convergence and the ADP Error Propagation 

tools developed for the stochastic model. Inspection examples will be described along with necessary 

results and plots to describe the significance of the tools. 

STOCHASTIC MODEL - WITH “TRIALS” ANALOGY 

The Stochastic approach to inspection [3] involves simulating the inspection process i.e., randomly 

choosing a fixed number of items from sample space and performing measurements for these samples. 

For each random outcome, a DP value is calculated. Multiple such Simulations/Trials are performed 

on the same sample space to get multiple DP values. The final Detection Probability is given by the 

Average or First Moment of all the individual DP values and the standard error of all individual DP 

values gives the error in the final DP estimate.  

For ith simulation or trial, the obtained DP estimate is taken as Xi and ‘N’ such simulations are 

performed such that ‘i’ takes the values of 1 to ‘n’. Mean of all Xi values equation (1) gives the final 

DP estimate and the standard error of all Xi values equation (2) gives the required error in the 

estimated DP value. 
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NEED FOR ERROR CONVERGENCE IMPLEMENTATION 

From equation (2) it is clear that increasing the number of trials ‘N’ will lower the standard error in 

the final result and figure (1) demonstrates the convergence of error with increase in number of trials. 

Through the error converges by increasing the trials, in order to conserve the computational resources, 

it is necessary for the model to be able to run precisely required number of trials not more nor less in 

order to achieve certain set error in DP estimate. Unfortunately, the required number of trials needed 

to achieve certain error in DP estimates vary with type of inspection problem which can be observed 

in figure (1). Different falsified pin examples converge to different errors when model runs same 

number of trials. To achieve the set error in DP the viability of the following two options has been 

explored: 

1. Pre-compute minimum trials or  

2. Perform running standard error estimations. 

Building a package that pre-computes minimum trials require the evaluation of dependances of final 

detection probability on different input variables. This is a difficult task as the number of variables 

involved keep varying from problem to problem. Mainly number of item types in the sample space 

and number of instruments used in the inspection process keep changing with different diversion and 

detection strategies applied to the stratum. Thus, building a package that can predict minimum trials, 

required to reach certain error, for any inspection scenario is not a viable option. The more efficient 

and practical option is to remodel the existing stochastic model from “Trials” analogy to “Trials-

Batches” analogy and estimate running standard error allowing the code to decide when to stop 

running additional batches once the set error in DP estimate has been achieved. 

STOCHASTIC MODEL - WITH “TRIALS & BATCHES” ANALOGY 

Statistical DP Error Convergence package has been developed, allows the model to converge to the 

required accuracy without the need to quantify the minimum trials. The tool makes use of Batches-

Trials analogy with each batch containing fixed number of trials/simulations performed yielding a 

DP estimate and an error estimate at the end of each batch. The code, runs one batch at a time and a 

running estimate of DP and its standard error are computed using individual estimates from each 

batch, continues to run more batches until the error converges to set value. This Batch-Trial analogy 

allows the code to be efficient with computational resources and at the same time reach the set 

accuracy of final result without the need to compute minimum number of trials. This running estimate 

of DP and its standard error is computed using the one-way balanced ANOVA derivation[4]. 

 



Estimating running DP and standard error using ANOVA 

Let Xij represent DP for the ith Trial of jth Batch. The values for i range from 1 to N trials and j takes 

values from 1 to M batches. Assume that the Xij are independent and identically distributed random 

variables with mean μ and variance 𝜎2. The complete set of DP values can be represented in terms of 

the following matrix: 

(

𝑋11 𝑋12 ⋯ 𝑋1𝑀

𝑋21 𝑋22 ⋯ 𝑋2𝑀

⋮
𝑋𝑁1

⋮
𝑋𝑁2

⋱
⋯

⋮
𝑋𝑁𝑀

) 

Each Batch consists of ‘𝑁’ DP values. For the 𝑗th batch, the mean, standard deviation and standard 

error in the mean are as follows: 

 
𝜇̂𝑗 = 𝑋̅.𝑗 =

1

𝑁
∑ 𝑋𝑖𝑗

𝑖

 

𝑠𝑗
2 =

1

𝑁 − 1
∑(𝑋𝑖𝑗 − 𝑋̅.𝑗)

2

𝑖

 

𝑠𝑒(𝜇̂𝑗) =
𝑠𝑗

√𝑁
  

 
 
 
 

Aggregate mean, standard deviation, and standard error across the batches may be computed as 

follows: 
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(3) 
 
 

The breakdown of the complete set of simulations into multiple subsets of batches is similar to the 

“within-group” and “across-group” calculations used in analysis of variance (ANOVA). We apply 

the same calculations used in ANOVA to compute overall statistics. First, the overall mean is simply 

the average of batch means as noted by 𝜇̂𝑎𝑣𝑔. The overall standard error is computed as follows: 
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When number of batches M = 1, the second term in equation (4) disappears and the equation (4) 

reduces to equation (2) i.e., the standard error is simply the error of all simulations in batch-01. When 

number of trials per batch N =1, the first term in equation (4) disappears and the standard error is 

simply the standard error of individual values taken across all batches. 



ADP ERROR PROPAGATION 

The problem of ADP error propagation using stochastic DP results is addressed using both 

deterministic and stochastic methods. Deterministically, the propagation of error for ADP where 

component variables are in simple product with each other,  
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For functions 𝑓 =  ∏ 𝑋𝑖
𝑛
𝑖=1  with independent variables, relative error in f is given by [5,6].  
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By rearranging and simplifying above expression with ADP & DP terms the final Standard error in 

ADP is given by the formula below, 
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(5) 

Stochastically, for all strata, normal distributions with DPi as mean and SEi as standard deviations 

are built. At each stochastic trial/simulation a single DP value is sampled randomly from each of the 

distributions and with the obtained set of DPs a single ADP value is computed. By using sufficiently 

large number of trials/simulations enough number of ADP values are generated in similar manner 

which in turn resemble a new normal distribution whose mean and standard deviation gives the final 

ADP and its standard error, respectively.  

RESULTS 

The convergence of standard error is demonstrated using the ‘varying falsified pins’ example 

inspection case described in paper Krieger et al. [1]. The spent fuel pond contains 𝑁 = 2500 spent fuel 

assemblies (SFAs) with each assembly containing 𝐿 = 96 fuel pins and in terms of material each 

assembly contains 2 kg or 0.25 SQ (𝑥̅) of Pu. A total goal amount (𝐺) of 1 SQ or 8 Kg of Pu is chosen 

to be diverted by removing 𝑟pins pins from each assembly. To acquire 1 SQ would require 𝑟SFA 

assemblies from which 𝑟pins pins are removed while the remaining 𝑁 − 𝑟SFA assemblies remain 

untouched. Multiple example diversion strategies are considered where the falsified pins per assembly 

𝑟pins are chosen to be 2, 3, 5, 28 and 96 pins, which makes the total number of falsified assemblies 

𝑟SFA required to divert 1 SQ to be 192, 128, 77, 14 and 4 SFAs respectively computed based on the 

equation below. 
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Out of 2500 SFAs, the inspector verifies 10 SFAs with the ICVD, 65 SFAs with the DCVD, and 25 

SFAs with the PGET, with their respective Identification probabilities discussed in the same paper, 

where per verified SFA only one measurement instrument is applied.  

 

Error Convergence using Trials Analogy. 

The initial stochastic model allows the user to set the number of trials used for computing DP results. 

The model simulates the above examples by varying the trials in logarithmic fashion from 10 to 

100000 trials. The DP and standard error are computed using equations (1) & (2) respectively. 

Convergence in standard error to lower values can be seen in figure 1, the figure also demonstrates 

the fact that using same number of trials different examples converge to different standard error values 

which means using Trials only analogy the user must have an idea of number of trials he or she need 

to specify in order to get to required standard error for all examples. The goal of being able to compute 

DP values with required standard error is being achieved using Trials-Batches Analogy has been 

incorporated into the model. The added capability initiates new batch of trials and estimates running 

standard error using equations (3) & (4) until the error reaches set value making the model more 

practical to use for any user. 

 
 

Figure 1. DP error convergence plot showing reduction of standard error with increase in number of 
Trials. 

Error Convergence using Trials-Batches Analogy 

The stochastic model updated with error convergence package simulates the above examples using 

2000 trials per batch with a target standard error set to 0.002. The running DP & standard error is 

computed using equations (3) & (4) respectively. The code automatically generates and runs new 

batches until the standard error is equal to or less than the set value. Convergence in standard error to 

the set value can be seen in Figure 2, demonstrating the significance of the error convergence tool in 

conserving resources and bypassing extra steps required in computation of number of trials. 



 
Figure 2. DP error convergence plot for various examples with code initiating new batches and 

terminating once the apparent error reaches set value (0.002) 

ADP Error Propagation Results 

A 10 Strata example with following set of DPs & Errors is considered and final ADP & its error is 

estimated using both deterministic formula & stochastic propagation tool discussed earlier. The 

results are compared below and found to agree with each other. 

Combination DPs: [0, 0.5, 0, 0.6, 0, 0, 0, 0, 0, 0]; 

Combination Errors: [0, 0.002, 0, 0.0025, 0, 0, 0, 0, 0, 0]. 

Using Stochastic error propagation with 100,000 Trials, the final ADP is computed to be 0.80000032 

±  0.0014843. Whereas the Deterministically using equation (5), computed ADP value is 0.8 ± 

0.00148408 are in agreement with each other. The deterministic error computation is much faster than 

stochastic error propagation and is chosen for practical applications. 

 

CONCLUSIONS  

Statistical balanced ANOVA derivation allows the estimation of running error in Trials-Batches 

Analogy, allows the user to skip the steps required to compute number of trials needed to reach certain 

error in DP estimates. Aggregating stochastic DP results requires the propagation of error, which is 

achieved deterministically and stochastically. Addition of the error convergence & error propagation 

packages standardizes the stochastic model built for IAEA Inspection Problems.  

 

 

 



RECOMMENDATIONS AND FUTURE WORK  

Currently, the model is built such that required error is set by user and the model stops running 

additional batches once the running error is less than or equal to set value. The future work involves 

development of similar framework which allows the user to set time and the code stops running when 

the execution time approaches the set time. 
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