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ABSTRACT 

Many safeguards systems used by the IAEA are extremely expensive because of the need to 

authenticate the data produced by those systems. Their prohibitive costs limit both the number of 

systems available to support effective safeguards as well as the current scope of unattended 

monitoring. Therefore, as an increasing number of facilities require safeguards, inexpensive 

unattended systems will become necessary. To help pursue this end, we are conducting an 

ongoing field trial of a machine learning algorithm to draw safeguards conclusions from an array 

of inexpensive sensors deployed at a fuel fabrication site in the United States. Specifically, we 

are testing the machine learning method’s ability to identify activities at a fuel fabricator facility 

and unusual movements that are inconsistent with their expected pattern of behaviors. This 

small-scale trial is a follow-up to a proof-of-concept previously conducted on this method. If 

successful, the conclusion of this test will encourage a follow-up, larger-scale trial in which 

additional sensor types (e.g., radiation detection devices, scales, etc.) are incorporated into the 

machine learning method for a full-scale, “real world” application of this method. This trial will 

help us assess the potential for machine learning technological advancements to advance nuclear 

safeguards in an inexpensive, accessible way. Findings will have direct and practical 

implications for international safeguards technology and IAEA operations. 

INTRODUCTION 

The landscape of nuclear power is ever-changing. Countries are pursuing nuclear energy in 

increasing numbers, as the international community is attempting to move towards more 

sustainable and eco-friendly ways to meet energy needs. However, because of the dual-use 

nature of many nuclear-related commodities and activities, it is necessary to effectively 

implement safeguards for existing and burgeoning nuclear programs. It is also important that 

these safeguards are cost-effective and efficient, given the increasing number of resources that 

will be required to match the heightened number of countries pursuing nuclear programs.  

Despite their significant advances in recent history, current safeguards measures can be costly, 

inefficient, and in some assessments, invasive (ex., Morrison 2006). Spectroscopic radiation 

detectors, for example, which are highly effective, can become prohibitively expensive when 

implemented in large numbers within a facility. However, with the aid of machine learning, it 
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may be possible to use non-spectroscopic detectors to draw safeguards conclusions. Likewise, in-

person inspections, which can also serve as an invaluable tool for validating the peaceful use of a 

nuclear program, have been critiqued as invasive, because inspectors can probe and must be 

hosted (ibid). This is particularly true when inspectors tour sensitive military facilities (ibid). 

Inspectors also have inefficiencies that can be optimized by well-strategized misuse or diversion 

activities. Safeguards measures that ameliorate some of these methods’ disadvantages would be 

particularly useful in the modern day, as more countries pursue domestic programs.  

As the nuclear landscape changes, so do the capabilities with which to monitor it. The 

advancement of artificial intelligence (AI) and machine learning (ML) technologies, which have 

flourished in recent years, provide an opportunity to create more cost-effective, efficient 

safeguards. Machine learning models can be created with readily available computer 

programming toolkits, and developers are constantly refining and optimizing tools for these 

models. Algorithms’ ability to collate and process various disaggregated information remotely 

and with relatively little financial burden could help improve safeguard measures by making 

them more accessible and efficient. Likewise, the cameras and sensors that could be used to 

collect data for machine learning models to classify can aggregate various anomalies that a 

human might fail to detect, but which could also be symptomatic of facility misuse or materials 

diversion (Rushdi et al. 2019). The IAEA already uses some of this technology in complex fuel 

cycles for nuclear materials accountancy (ibid). However, expanding this method into simpler 

fuel cycle processes and to also detect anomalistic behaviors (rather than primarily for material 

accountancy) could further advance safeguards in a cost-efficient and effective way. 

Because of this potential, it is timely to test the machine learning models’ potential application 

on nuclear safeguards. To this end, researchers at Savannah River National Laboratory (SRNL) 

and Sandia National Laboratory (SNL) are conducting an ongoing field test of machine learning 

methods’ abilities to assess nuclear safeguards at a fuel fabrication facility. The  goal of this paper 

is to explain the machine learning method being implemented, discuss its effectiveness in a 

completed proof-of-concept, and explore practical takeaways that have emerged in the field test 

thus far for practitioners who might hope to implement a similar method and take it to scale in 

the future.  

A DESCRIPTION OF THE METHOD    

The authors are currently conducting a field test to examine the feasibility and effectiveness of 

collecting data from a fuel fabrication facility, applying machine learning algorithms to examine 

those data, and drawing safeguards conclusions about the facility. For this field study, the data 

relates to 30B cylinders at a fuel fabrication facility. Data consists of “pattern-of-life” 

information, such as the locations of cylinders, their everyday movements, etc. After training 

machine learning algorithms to (1) identify cylinders through image classification methods and 

(2) identify typical patterns of life, the machine learning model will be asked to classify 

cylinders’ activities as usual or unusual. The goal of this technique is to help safeguards monitors 

of the potential misuse of diversion of nuclear material at a fraction of the cost of other effective 

safeguards measures. 
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Abnormal behaviors could include a cylinder leaving a facility at an unusual place or time, or 

cylinder movements to and from the cylinder yard that indicate unusual behavior in feeding the 

pellet lines, for example. When automated, if the algorithm detects an abnormality, it will be able 

to send an alert to the relevant monitoring practitioners. The practitioners can then use this 

prompt to help them assess the potential for misuse or diversion of nuclear materials. In the event 

this information cannot be transmitted offsite, the information will be stored locally for review 

by an inspector when they are next at the facility. If taken to scale, additional information from 

other safeguards a given facility might also have (ex., scale weights) could be incorporated into 

the model to further improve its remote assessment capabilities.  

In practice, it could take a considerable amount of time to collect enough data to identify patterns 

of life sufficiently enough to decrease false alarms and maximize true positives. However, after 

adequately training the machine learning algorithms, they will require very little input and 

provide considerable return on investment. Therefore, though the method requires time and data 

on the front end, its inputs decrease in demand over time.  

PROOF-OF-CONCEPT  

The first step to test this method was conducting a proof-of-concept in which researchers from 

SRNL and SNL conducted an analysis to help ensure this machine learning method would be 

appropriate for safeguards monitoring (see Rushdi et al. 2019 for proof-of-concept). In some 

cases, machine learning models can be difficult to train adequately enough to provide a 

satisfactory ratio of true to false positives and negatives. The proof-of-concept was undertaken to 

address these concerns.  

The research team trained an algorithm against a fabricated dataset of 50+ sensors the team was 

monitoring. The algorithm was trained to predict whether the “pseudo -facility” that the data 

would have come from was engaged in activities that were indicative of “normal” behaviors 

(“N”), “misuse” of the facility (“M”), or “diversion” of material (“D”). The team’s goal was not 

to provide live accountancy of materials, as some IAEA safeguards already do with similar 

technology, but to provide indicators that material or operational quantity anomalies (e.g., 

wrongfully high enrichment) might be present. 

To test this technique, the team created a dataset describing normal patterns of life within the 

pseudo-facility that would have been picked up by the sensors’ signals. Variables from the 

signals included material weights, time on scales, enrichment levels, ID matches, temperatures, 

and strain gauges’ rack statuses. The team then injected synthetic data that would mimic 

symptoms of misuse or diversion (e.g., mass changes, product quantity changes, flow duration 

changes). The synthetic data simulated various paths to misuse or divert materials. The team 

ensured that variables followed a normal probability distribution, so that most observations were 

normal, with a minority not so (see Figure 1 for distributions).  
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Figure 1. Probability Distribution of Sensor Signals (Source: Rushdi et al. [2019]) 

To test the algorithm, the team created rules they hoped the algorithm would detect. If the sum of 

reported signals was lower than a given number, the model should assign it the status of normal 

(“N”). If the sum was larger than or equal to that number, but also smaller than another greater 

threshold, it should be assigned the status of misuse (“M”). If the sum exceeded or was equal to 

the final threshold, it should be assigned the status of diversion (“D”). Extra weight was given to 

the most critical sensors, such as enrichment detectors. These rules are described in Table 1 

below: 
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Table 1. Rules of Classification (Source: Rushdi et al. [2019]) 

 

where R1 is rule one, R2  is rule two, R3 is rule three, Ns is the number of sensors, S is the sum of 

sensor signals, E1 is the number of enrichment sensors reporting misuse , E2 is the number of 

enrichment detectors reporting diversion, W1 is the number of scales reporting misuse, and W2 is 

the number of scales reporting diversion. The same rules can be visualized in Figure 2 below: 

 

Figure 2. Visualized Rules of Classification (Source: Rushdi et al. [2019]) 

After assembling the dataset, the team tested various machine learning models’ (e.g., logistic 

regression, naïve Bayes, k-nearest neighbors, etc.) ability to assign labels of normalcy, misuse, 

and diversion. Because most data should appear normal, a model could boast a misleadingly high 
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accuracy rate, in which the only correct predictions are true normals, but no misuse or diversion 

labels were correctly assigned. Therefore, the team considered models’ abilities to predict R2 and 

R3 (see Table 1 for definitions), which include misuse and diversion, as well. 

As can be seen in Tables 2, 3, and 4 (below), the models had considerable success classifying 

behaviors that were indicative of normalcy, misuse, and diversion. Accuracy rates were upwards 

of 99%. As documented in Tables 3 and 4, Gradient boosting improved scores on R2 and R3; 

though, it had the disadvantage of a comparatively longer training time .  

Table 2. Train and Test Scores using R1 (Source: Rushdi et al. [2019]) 

 

Table 3. Train and Test Scores using R2 (Source: Rushdi et al. [2019]) 

 

Table 4. Train and Test Scores using R3 (Source: Rushdi et al. [2019]) 

 

The proof-of-concept provided a promising basis to continue developing this method for scaled 

application of safeguards monitoring. However, testing the concept in a real fuel fabrication 

facility and under different conditions is important to further improving it. It would be 

advantageous to better understand how different sensors correlate with each other, how the 

models perform with and without various tools (for example, without enrichment detectors), and 
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how the models handle data coming in at different rates. For these reasons, it is helpful to assess 

the technique in practice. 

THE CURRENT STUDY  

The current study builds upon the proof-of-concept. It is an ongoing study in which data is 

gathered from a fuel fabrication facility using remote sensors, and is then used to train a machine 

learning algorithm to 1) identify cylinders and 2) identify unusual activities.  

At the time of writing, the team is training the algorithm to positively identify different kinds of 

cylinders that are used in the fabrication facility. The team is also working on gathering data this 

will be used to train an algorithm to detects patterns in cylinders’ activities. In an automated 

process, which is the ultimate goal of this series of studies, the algorithm would need to first 

positively identify cylinders, then recognize their patterns of life, identify unusual behaviors, and 

alert the analyst.  

The cylinders’ behavioral data will include variables such as the time of day, the direction a 

cylinder is moving, etc. In practice, these inputs would require little besides cameras and a 

computer program, providing an economically-feasible monitoring option for analysts. The data 

used in this project could be combined with other data facilities have available, such as radiation 

detectors, etc. As the team gathers data and trains the models, they will note models’ 

performance and the prospects for applying the technique in practice. 

As the team conducts this field test, several considerations have emerged that could help future 

researchers and practitioners aiming to apply similar techniques to safeguards. First, the security 

concerns associated with facilities that operate as part of the nuclear fuel cycle, such as fuel 

fabrication facilities, affects how this technique can be applied. For example, in the current 

study, cameras used to collect data from the facility could not have Wi-Fi capabilities, but still 

needed to meet certain technological standards (ex., having a certain frame rate). Relatedly, 

assuaging facility operators’ concerns regarding the incorporation of any cameras at all into their 

facilities was an obstacle the team faced and could be an important factor for future researchers 

and practitioners to consider, as this process can delay or completely halt the ability to monitor. 

Some facility operators might prefer remote cameras to physically present people , who must be 

escorted and could affect everyday operations when present; however, others might consider a 

camera’s constant presence to be invasive. Practitioners must recognize these factors when 

considering the implementation of this safeguards technique. 

Another consideration is the length of time required to train a machine learning model to 1) 

successfully classify images and 2) learn and label routine versus non-routine activities. To 

produce a highly accurate algorithm with appropriate levels of sensitivity to changes in 

behavioral patterns, huge swaths of data would need to be incorporated into a dataset. Therefore, 

when taking this technique up to scale, additional time needs to be factored in to train the model 

before it can become operable. However, as noted previously, this front-end input should result 

in considerable back-end payoffs in terms of labor and money dedicated to upkeep.  
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CONCLUSIONS 

Machine learning algorithms can help remote safeguards practitioners recognize and respond to 

potential facility misuse or materials diversion. They can also aggregate various pieces of 

information that could be symptomatic of misuse or diversion, but which could also be easy to 

overlook by humans. The IAEA has applied machine learning to complex fuel cycles and for 

material accountancy purposes; however, it has not yet expanded these capabilities to include 

simpler fuel cycles or material/operational anomalies (Rushdi et al. 2019).  

As more countries pursue and express interest in nuclear power programs, the ability to 

incorporate inexpensive, effective safeguards is becoming imperative. Using machine learning 

capabilities to remotely classify fuel cycle activities is a potential path forward in advancing 

safeguards and providing feasible evaluation options. The authors’ field test of this method is 

meant to provide additional insight into how the effectiveness and practicality of th is method. 

The proof-of-concept conducted provides promising results for the prospects of applying the 

machine learning technique. Its accuracy rates with realistically-distributed data were upwards of 

99%. The field test of a fuel fabrication facility is ongoing, with the researchers currently 

training the image classification algorithm to identify cylinders and working on data collection. 

Thus far, security concerns and selecting cameras that can withstand rigorous security measures 

but also be technologically sufficient have created obstacles that can provide lessons to 

practitioners aiming to take this method to scale. Additionally, while this study is focused on 

assessing the performance and feasibility of machine learning methods to detect unusual 

activities, connecting those assessments to an automated alerting system is a next step that will 

be useful in providing a model tool to take to scale. 

Machine learning techniques are a promising approach to effectively meet the need to safeguard 

nuclear power programs, particularly as countries pursue the programs in higher numbers. As 

these models are further studied and developed, it is possible that they can become a useful tool 

for the international safeguards community to effectively carry out its goals. 
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