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ABSTRACT 

Video surveillance is one of the most important technologies used by the International Atomic Energy 
Agency in international safeguards. At large, complicated facilities, multiple surveillance cameras are 
deployed to monitor the transfer of safeguards-relevant objects across the site. During inspections, all 
surveillance videos are reviewed to ensure the objects are not manipulated or diverted during transfer, 
a laborious, time-consuming task. This work describes using deep machine learning algorithms to 
track objects automatically across multiple cameras, greatly improving the efficiency of the review 
process. The fundamental problem in this object tracking task across multiple cameras is how to 
associate the same object, which may show extreme intra-class variations, such as viewpoints, 
occlusions, and various scales, in different and even non-overlapped cameras. Object re-identification 
(Re-ID) in nuclear facility video surveillance is even more challenging than classic person or vehicle 
Re-ID problems because different instances in the same category may display an identical appearance. 
One observation from nuclear facility surveillance videos is that all objects must be carted (e.g., via 
forklift) to move. Therefore, the spatial context information of an object, which provides the feature 
from the carrier, is critical for the object Re-ID task. This work proposes a two-stream convolutional 
neural networks model that takes features of objects and their surrounding regions into account. 
Moreover, the custom videos usually are gleaned from different scenes from the training data, which 
may have extreme variations in illumination changes and/or cluttered backgrounds. Directly applying 
the trained model to custom videos will dramatically decrease the performance. To tackle this 
problem, an advanced domain adaptation technique is proposed to mitigate the gap between the data 
taken from different scenes. The proposed framework will track objects of interest across a nuclear 
complex. The resulting tracks can be used in further analyses, such as event/activity recognition, 
anomaly detection, etc.  
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INTRODUCTION 

Video surveillance is used for a variety of purposes, including physical security monitoring for 
sensitive facilities, remote monitoring and verification of nonproliferation treaties, and nuclear 
safeguards. It is one of the primary technologies used by the International Atomic Energy Agency 
(IAEA) in the implementation of international safeguards. Currently, IAEA inspectors manually 
review all surveillance videos to confirm that objects containing nuclear materials are not manipulated 
or diverted during transfer or storage and to confirm the absence of undeclared activities; this manual 
review is a laborious, time-consuming task. A machine-learning-based object tracking method is 
being developed by Brookhaven National Laboratory (BNL) to help IAEA inspectors review the large 
number of surveillance videos from the nuclear facilities. As nuclear facility workplaces usually are 
quite large, multiple cameras are used to monitor each facility. Therefore, this work is divided into 
two sub-tasks. The first one is tracking objects within the field of view of a single camera – traditional 
object tracking task in machine learning, and the second involves tracking objects across cameras by 
associating the same object in different cameras – the so-called object re-identification (Re-ID) 
problem. 

The Re-ID task has been studied extensively in two applications: person Re-ID [1] and vehicle Re-
ID [2]. It is challenging because of the large intra-class variation, i.e., the same object may appear 
quite differently in various cameras in terms of the viewpoints, occlusions, and illuminations. In even 
worse cases, the same object seen from different viewpoints or under different illumination conditions 
may appear to differ even more than different objects do under the same conditions. In this project, 
the object Re-ID task is more challenging than the person or vehicle Re-IDs as different instances of 
the same object may appear identical. Figure 1 shows two example images. The boxes outlined in red 
contain the same object, while the boxes in blue have different objects. However, without color box 
labeling, it is difficult to discern the differences visually. 

 

 

Figure 1. Examples of the images and objects that detail the complexity in object Re-ID.  

Fortunately, the object Re-ID task has a unique feature compared to the person and vehicle Re-ID 
tasks. Both people and vehicles can move “by themselves” without any carriers, but the objects in 
nuclear facilities usually are bulky and heavy and must be moved by either a crane, forklift, or truck. 
With this assumption, the spatial context information, which provides the carrier information, 
becomes critical to the object Re-ID task. Therefore, a two-stream machine learning model is 
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proposed here that takes pairs of image patches – object and surrounding – and determines whether 
they belong to the same object by considering features of both the object and its surroundings. 

DATA COLLECTION 

To train and demonstrate the proposed model’s effectiveness, both indoor and outdoor test datasets 
were collected at Brookhaven National Laboratory’s Waste Management Facility. Figure 2 shows the 
indoor data collection setting with five different cameras to cover the scene. There were five objects 
in total.   The object carried by a crane (referred to as Box A) and the object carried by a forklift 
(referred to as Box B), moving along the two dotted lines, were considered as objects of interest.  
Three others, referred to as Box 1, 2, and 3, were standing on the floor, and treated as objects of non-
interest (NI Box). Cameras could record both Boxes A and B at certain times. For the outdoor 
scenario, a box, referred to as Box C, was carried by a forklift moving into and out of the building. 
Figure 3 shows the sample images of Boxes A, B, and C. In the experiments, Boxes B and C were 
treated as the same object but in different scenarios. 

 

Figure 2. Data collection environment. 

 

Figure 3. Sample images for different boxes in specific scenarios. 

DEEP LEARNING MODEL 

Object Re-ID with a Two-stream Deep Convolutional Neural Network Model 

As mentioned, a two-stream deep convolutional neural network (CNN) model, motivated by [3], is 
used to tackle the object Re-ID problem. The object Re-ID problem is considered as the binary 
classification task, i.e., with input consisting of a pair of object images, the model predicts either 
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“matching” (the same object) or “non-matching” (different objects). As shown in Figure 4, the model 
has two streams, one for the object images and the other for their surrounding regions. The object 
stream takes two object images and extracts their features by using the same CNN model, while the 
surrounding stream also takes two surrounding images and extracts their features by using another 
CNN model. The features from the object and surrounding streams are concatenated together then 
fed into a binary classifier.  

 
Figure 4. Illustration of the two-stream deep CNN model. 

Object Re-ID with Domain Adaptation 

In this project, the images taken from different cameras may have distinct illumination and blur 
conditions and background clutter as seen in the datasets discussed previously. Directly applying the 
model trained from one scenario (e.g., indoor), referred to as the source domain, to another (e.g., 
outdoor), or the target domain, usually results in significantly degraded performance (described in 
Section 4.3), while labeling data in the target domain as training samples would be time-consuming. 
To solve the scenario difference problem without labeling any data in the target domain, the domain 
adaptation technique can be used by aligning the source and target distributions in feature space. 
There are two approaches commonly used to project data in both source and target domains to a 
common feature space, where source and target feature distributions are similar. 

The first approach is the Maximum Mean Discrepancy (MMD) [4]. MMD is used to measure the 
difference between two distributions. Thus, minimizing the MMD of the distributions of the source 
and target data could reduce the distributional difference between two domains. 

MMD is defined as Eq. (1), which is the distance of the mean of two distributions, 

, 
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where 𝑋௦ and 𝑋௧ denote the source and target domain and 𝑛௦ and 𝑛௧ represent the data numbers in 
the source and target domain, respectively. 𝐴୘ indicates a mapping from the original image space to 
the feature space, which is a feature extraction process. In this study, it is a CNN model. 

The second approach is adversarial learning [5]. Much like methods used in generative adversarial 
networks (GAN), a discriminator is introduced to determine which domain the feature comes from, 
while the feature extractor tries to generate features to fool the discriminator, i.e., the feature extractor 
attempts to extract the features that are domain invariant. Once trained, the features from different 
domains are well aligned. 

While conventional MMD works well on domain adaptation for the standard image classification 
problem, it has difficulties handling the open set object Re-ID problem [6]. Therefore, we convert the 
original feature space to be a so-called dissimilarity space. Specifically, it is generated by calculating 
the within-class and between-class distances. In this study, by tracking the objects within a video, we 
can easily obtain the same instance to calculate the within-class distances. All other instance pairs are 
used to calculate the between-class distances.  

For the labeled source domain, we employ standard supervised learning with cross entropy loss 
function and standard metric learning with triplet loss. For the unlabeled target domain, we use MMD 
minimization in both original feature space and dissimilarity space. The MMD minimization is used 
to align the distributions in different domains.  

EXPERIMENTAL RESULTS 

Experimental Setting 

As described in Section 2, there are two objects of interest in the datasets. The first one (Box A) was 
carried by an indoor crane, and the second one was carried by a forklift in both the indoor scene (Box 
B) and the outdoor scene (Box C). All other boxes are non-interest objects. In this study, it is assumed 
that all the objects already have been detected, e.g., by the You-Only-Look-Once (YOLO) object 
detection algorithm introduced to safeguards applications in the early work of this project [7]. Thus, 
all objects and their corresponding surrounding regions are labeled and ready to use.  

We evaluate two different settings: the inner-object and across-object settings. For the inner object 
setting, all training data is from one object of interest, e.g., Box A, while all testing data also are from 
Box A. In contrast, for the across-object setting, the model is trained and tested with different objects 
of interest. For example, if Box A is used for training, then the positive pair is two images of Box A, 
while the negative pair is one image of Box A and one image of another object. The testing pairs are 
all Box B. During training, the model has never seen Box B with the forklift, but the trained model 
will be tested on Box B. Therefore, the across-object setting shows the model’s generalization ability. 
Along with the inner- and across-object settings, we also evaluate the inner- and across-domains 
settings, i.e., the objects may be from a different scenario. 

Evaluation Metrics 

As in other classification tasks, recall, precision, and F1-score are used as evaluation metrics in this 
study.  As shown in Figure 5, given a pair of the same objects, if the model predicts as positive, it is 
considered as a true positive. Otherwise, it is treated as a false negative. Similarly, given a pair of 
different objects, if the model predicts as positive, it is considered as a false positive; otherwise, it is 
treated as a true negative.  Recall and precision are defined as 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
்௥௨௘ ௉௢௦௜௧௜௩௘

்௥௨௘ ௉௢௦௜௧௜௩௘ାி௔  ே௘௚௔௧௜௩௘
     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

்௥௨௘ ௉௢௦௜௧௜௩௘

்௥௨௘ ௉௢௦௜௧௜௩௘ାி௔௟  ௉௥௢௦௜௧௜௩௘
   . 

 

 
Figure 5. Illustrations of true positive, false negative, false positive and true negative. 

Generally, high recall means given a pair of the same objects, there is a small chance it will be 
classified as negative. High precision means given a pair of different objects, there is a small chance 
it will be classified as positive. The F1 score is the harmonic mean of recall and precision, which is a 
balance of them, defined as follows: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
ோ௘௖௔௟௟×௉௥௘௖௜௦௜௢௡

ோ௘௖௔௟௟ା௉௥௘௖௜௦௜௢௡
  . 

Results 

For the indoor setting, the first and third columns in Table 1 show the inner object setting results, 
which are almost perfect. The second and fourth columns show the across-object settings, where the 
precisions are reasonable, but recall is lower than those for the inner-object settings.  

Table 1. Results of different settings. 

 

For the across scenarios/domains settings, the fifth and seventh columns of Table 1 show the results 
of the across-object and across-domain settings, while the sixth and eighth columns depict the results 
of the inner-object and across-domain settings. Its accuracy dropped considerably compared to the 
inner-domain settings. 

To improve performance of the across-domain settings, a small number of target images were added 
into the training set. For example, if the model is trained on Box A (source data) and a small number 
of Box C (target data), then testing is done on Box C and the experiment is noted as Box A -> Box 
C. The left sub-figure in Figure 6 shows the (Box A->Box C) performance with a different number 
of target data added, while the right sub-figure depicts the (Box B->Box C) performance. With more 
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target data added, the precision usually remains the same (or slightly drops), while recall increases. 
With the help of additional target data, the F1-score increases from 20.37% (Box A->Box C) and 
55.38% (Box A->Box C) to 66% and 70%, respectively.  

 
Figure 6. The Box A->Box C (left) and Box B->Box C (right) performance of 

varying amounts of additional target data appended to the training set 
without data augmentation techniques. 

To further improve the performance, data augmentation was implemented in the model to mimic the 
scenario difference. Specifically, two basic augmentation techniques, rotation, and illumination 
adjustment, were added to the model. Figure 7 illustrates the results of the Box B->Box C setting with 
data augmentation. It shows an F1 score of 74% compared to 70% without data augmentation. More 
importantly, the recall value improved significantly, especially when fewer images of Box C were 
used in training. 

 
Figure 7. The Box B->Box C performance of different additional target data 

appended to the training set with data augmentation techniques. 

Object Re-ID with the domain adaptation technique is being evaluated. Here, the dataset is split into 
indoor and outdoor scenes, and the model is trained on the outdoor scene with 982 images and tested 
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on 283 indoor images. The evaluation metric used here is the rank accuracy, which is widely used in 
image retrieval tasks. Given an image, the model will first rank all other images based on their 
distances to the selected one. Rank-k accuracy is calculated based on top k closest images. The rank-
1 and rank-5 accuracies are 83.3% and 100%, respectively. The results are preliminary, and we will 
utilize the data augmentation and hyper-parameter optimization techniques to further improve the 
accuracy in the future. 

CONCLUSIONS 

Deep machine learning methods were proposed to automatically track objects across multiple 
cameras, especially in relation to safeguarding sensitive facilities.  Specifically, a deep CNN model 
was developed to extract the context information by taking pairs of image patches, from both images 
of objects and their surrounding regions.  The test results with different experimental settings, 
including inner/across objects and inner/across domains, have shown that this deep CNN model is 
effective in re-identifying objects across multiple cameras. However, the method requires significant 
effort in labeling the training images, which is a common issue in supervised ML methods. To solve 
the issue, domain adaptation techniques were proposed to improve the performance of the across-
domain settings without any labeled target data available.  Test results on the domain adaptation 
methods will be reported in the future. 
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