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ABSTRACT 
A methodology combining X-ray imaging and deep learning was developed to identify and track 

individual TRISO-fueled pebbles at the entry and exit of a PBMR reactor core. This method 

exploits the current fuel manufacturing process and leverages an intrinsic fingerprint set in the fuel 

pebble during fabrication. A database of simulated radiographs of unique TRISO-fueled pebbles 

was developed using MCNP and used to train a deep convolutional neural network using triplet 

loss to recognize pebble fingerprints. Distance metric learning was implemented to map the pebble 

radiographs to a lower-dimensional Euclidean space, where distance metrics could then be used to 

provide a direct measure of similarity between radiographic images. In this initial demonstration 

of the Pebble Recognition Algorithm, it is shown that the DNN model can successfully classify 

pebble fingerprints subject to irradiation-induced shrinkages of up to 0.30% with classification 

accuracies of 98.70%±2.60%. 

 

INTRODUCTION 
Pebble bed modular reactors (PBMRs) are fueled by TRISO-fueled pebbles, which are billiard-

ball-sized graphite spheres containing up to 18,000 fuel particles that are less than 1 mm in 

diameter [1-5]. Up to 400,000 TRISO-fueled pebbles may be contained within a reactor core at 

one time [6-9], and are continuously circulated in and out of the core during its operation. Fuel 

pebbles are inserted at the top of the reactor core, travel downwards through the core, and exit at 

the bottom of the reactor. Burnup measurements are then performed on the pebbles to determine 

if a pebble is viable for another rotation through the core or if the pebble has exceeded the burnup 

limit and must be removed from circulation [10]. Presently, pebble identities are not tracked 

because there is no viable method to tag individual TRISO-fueled pebbles without requiring 

alterations to the current manufacturing process. The mobility of the fuel pebbles and harsh 

environment of the reactor present challenges in developing a methodology towards identifying 

individual fuel pebbles. As the pebble transits the core, abrasion and degradation to the pebble 

surface occurs, eliminating the possibility of affixing or inscribing a tag or serial number to the 

surface of each pebble. Alternative approaches that have been proposed include embedding tags 

within the pebble itself, such as neutron activated dopants that are unique to each pebble and are 

read using gamma spectroscopy [11]. However, it can be challenging to design and implement 

radiation hard tags and producing individualized dopant concentrations for tens to hundreds of 

thousands of fuel pebbles is not the most realistic solution. Additionally, all of these methods 

introduce additional steps and costs to the current manufacturing process. 
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 Identifying individual TRISO-fueled pebbles and maintaining pebble identity is important 

for reasons concerning nuclear fuel accountability and safety. It is essential to determine if any 

fuel pebbles are retained in the reactor for unexpectedly long times because this will result in 

excessive burnup accumulation [12]. Additionally, maintaining pebble identity offers advantages 

towards validating computational physics models. 

 In this work, a new solution is proffered and demonstrated towards tagging individual 

TRISO-fueled pebbles that exploits the current manufacturing process instead of altering it. During 

pebble fabrication, thousands of fuel particles are mixed into an amorphous carbon phase, which 

is then pyrolyzed and compacted into hard graphite spheres [13, 14]. This process results in an 

arbitrary and unique distribution of particles set within a solid matrix, which can be interpreted as 

a fingerprint for every individual TRISO-fueled pebble. Because TRISO fuel particles are designed 

to contain fission products and irradiation induced defects within the particle [2, 5, 13, 15], the 

particles and the fingerprint are essentially fixed and will not shift significantly during irradiation 

in the reactor core. By imaging the TRISO-fueled pebble and implementing a deep learning 

algorithm, this fingerprint can be extracted and individual fuel pebbles can be virtually tagged. To 

automatically identify and tag individual TRISO-fueled pebbles at the entry and exit of a reactor 

core, a methodology combining X-ray radiation imaging and deep metric learning with triplet loss 

is developed and named the Pebble Recognition Algorithm. 

 

THE PEBBLE RECOGNITION ALGORITHM 

 

Introduction to Deep Learning 

Deep learning refers to the use of neural networks to search for patterns in data in order to complete 

some task. Neural networks are complex mathematical functions that aim to mimic the biological 

processes of the brain. These functions contain a large number of coefficients, or parameters, that 

must be fitted to training data in order to achieve a desired output. For an image classification task, 

the neural network learns to predict an identity, or class, for an image by performing a combination 

of transformations on that image. For example, convolutional neural networks (CNNs) use image 

processing techniques, such as convolutional filters, to extract and compare details between 

images. Signals generated from the input layer of the network travel through multiple layers 

(hidden layers) of the model to the output layer. CNNs can also be described as consisting of two 

separate sets of layers, where the first set consists of convolutional layers and serves to extract 

features from the input. These image features are extracted through the application of a 

combination of linear filters (convolutional kernels), pooling layers, and activation functions. The 

second set of layers are termed fully connected layers, which serve as classifiers using the extracted 

features and filters equivalent to the size of the image. Connections between all layers of the 

network are correlated with connection weights that the model learns by determining how much a 

signal should be amplified or reduced to produce accurate predictions. 

 It has been repeatedly demonstrated that convolutional neural networks are very successful 

at classifying images. Classification accuracies as high as 99.40% and 99.84% has been 

demonstrated on the CIFAR10 dataset and MNIST dataset, respectively [16, 17]. In these 

examples, the neural network was trained to output a vector of probabilities that the input image 

belonged to each class. For more challenging problems where a higher discriminative power is 

required, this backend of the model can be altered to instead provide a compact representation of 

the input image, otherwise termed an image vector or embedding. To determine the class the input 

belongs to, the distance (e.g. Euclidean, angular, etc.) between its representation and other 
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representations is computed. The partner that results in the minimum distance corresponds to the 

assigned class. This theory is called distance metric learning (DML) and is commonly applied to 

the image recognition benchmark. 

 Necessarily, DML requires objective functions that differ from classification-based 

functions such as the commonly used cross-entropy loss function. Distance metric learning 

requires objective functions based on distance metrics, where representations of the same class are 

separated by smaller distances than representations of different classes. Metric learning aims to 

maximize inter-class separation while minimizing intra-class separation [18, 19]. This is done by 

projecting the output of the neural network to a lower-dimensional space, or embedding space, 

where a simple distance metric (e.g. Euclidean, angular cosine) can be applied to compare images. 

DML has successfully been applied to the widely used datasets CIFAR10, CIFAR100, and MNIST 

[20, 21], face recognition [22-25], object recognition, hyperspectral and remote sensing scene 

classification [26, 27], and action recognition [28]. Using face recognition as an example, both 

DeepFace and FaceNet teach a neural network to output compact and sparse representations of a 

person’s face by relying on the RGB pixels that make up the input [22, 23]. FaceNet does this by 

training the network with triplet loss to output l2-normalized Euclidean embeddings, achieving an 

accuracy of 99.63±0.09% on the Labeled Faces in the Wild (LFW) dataset [23]. Inspired by this 

impressive work with deep learning and face recognition, this work will demonstrate the design 

and training of a deep convolutional neural network using DML with triplet loss towards the 

nuclear fuel recognition of TRISO-fueled pebbles. 

 

Workflow 

The Pebble Recognition Algorithm consists of a combination of radiographic images, a deep 

learning model, and burnup measurements. Before initial entry of a TRISO-fueled pebble into the 

core, X-ray radiographs along multiple orientations are taken of the fuel pebble. When the pebble 

exits the core, imaging is performed again and the DNN is invoked to determine the identity of the 

pebble. In addition, burnup measurements are also performed on the pebble. Because burnup is a 

strictly increasing value, as a fuel pebble is retained in the reactor core for longer periods of time, 

this measurement can be used to restrict the number of comparisons performed by the deep 

learning model. A pebble that has transited the core multiple times will have a higher burnup value 

than a fresh pebble that has just entered the core, and hence, there is no need to compare these two 

pebbles. On average, pebbles transit the core 10-15 times before exceeding the burnup limit [7, 8, 

29]. After a pebble exceeds the burnup limit, it is removed from circulation and rerouted to spent 

fuel storage. The radiographs corresponding to this pebble are then removed from the pebble 

library. A fresh pebble is added to the reactor core and the pebble library, and the cycle repeats. 

 

Network Architecture and Design 

The DNN model is made up of six convolutional layers followed by three fully connected layers, 

totaling 3.98M parameters. Weights are initialized using a Gaussian distribution with a mean of 

zero and standard deviation of 0.008. Biases are initialized to zero. 3x3 convolutional filters are 

applied to all convolutional layers. Average pooling is applied to the first three convolutional 

layers. Further pooling layers were not implemented because particle information was lost and 

classification accuracies decreased. This also occurred with max pooling. To speed up learning, 

batch normalization and the rectified linear unit (ReLU) activation function are applied to every 

layer of the neural network excluding the output layer. At the output layer, a hyperbolic tangent 

activation function is applied followed by an l2 normalizer, producing the pebble embedding for 
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Figure 1. Workflow for the Pebble Recognition Algorithm. 

 
 

 

Figure 2. Network architecture of the deep convolutional neural network for the Pebble 

Recognition Algorithm. 

 

the image. Triplet loss follows the embedding during training and stochastic gradient descent with 

Nesterov momentum on mini-batches of 64 images is applied. Momentum is set to a value of 0.9 

while weight decay is set to 0.0005. The hyperbolic tangent decay scheduler is implemented, with 

the initial learning rate set to 0.0175. The DNN is trained for 100 epochs. 

 

Objective Function 

Triplet loss is implemented with the network architecture for the Pebble Recognition Algorithm. 

Triplet loss emphasizes inter-class separation and is a common distance metric learning method 

[23, 27, 30-32]. This objective function minimizes the distance between similar images 
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(radiographs of the same pebble) and increases the distance between dissimilar images 

(radiographs of different pebbles). It takes three inputs – an anchor, a positive, and a negative. The 

anchor is the input image, the positive is an image of the same classification with respect to the 

anchor, and the negative is an image of a different identity. This work uses Euclidean distance 

with embeddings in Euclidean space, and the loss function is given by 
 

𝐿 = ∑ [‖𝑓(𝑥𝑖
𝑎) − 𝑓(𝑥𝑖

𝑝)‖
2

2
− ‖𝑓(𝑥𝑖

𝑎) − 𝑓(𝑥𝑖
𝑛)‖2

2 + 𝛼]
+

𝑇

𝑖=1

 

 

where 𝑥 is the input image, 𝑓(𝑥) represents the embedding, 𝑇 is the number of triplet sets, 

𝑎 corresponds to the anchor, 𝑝 to the positive, and 𝑛 to the negative, and 𝛼 is a margin (positive 

scalar) that must be imposed between the positive and negative pairs. 

 The selection of triplet pairs plays an important in training the neural network. Hard 

positives are defined to satisfy the following condition, 
 

argmax𝑥𝑝||𝑓(𝑥𝑎) − 𝑓(𝑥𝑝)||
2

2
 

 

while hard negatives conversely satisfy, 
 

argmin𝑥𝑛||𝑓(𝑥𝑎) − 𝑓(𝑥𝑛)||
2

2
 

 

To speed up convergence, triplets that provide a larger contribution to learning are chosen and are 

mathematically defined to violate the condition 
 

||𝑓(𝑥𝑎) − 𝑓(𝑥𝑝)||
2

2
+ 𝛼 < ||𝑓(𝑥𝑎) − 𝑓(𝑥𝑛)||

2

2
 

 

Easy triplets already satisfy this condition, and hence, do not provide a large contribution to 

learning. Hard positives and hard negatives violate this condition. However, selecting only the 

hardest triplets during training can have a negative impact on learning and introduce bad local 

minima and a selection bias. Triplet loss performs better with progressive learning [23, 33, 34]. 

One method to address these side effects is to use adaptive triplet loss, where the fixed margin is 

replaced with an adaptive margin 𝛼(𝑎, 𝑝, 𝑛) [21, 35]. Another method is to use semi-hard triplets. 

Semi-hard triplets violate the condition 
 

||𝑓(𝑥𝑎) − 𝑓(𝑥𝑝)||
2

2
< ||𝑓(𝑥𝑎) − 𝑓(𝑥𝑛)||

2

2
 

 

and may consist of moderate positives [36] or moderate negatives [23]. In this work, triplets are 

selectively sampled to predict semi-hard triplets based on moderate positives and hard negatives. 

 

Dataset 

A dataset of ~1,250 simulated radiographic images of TRISO-fueled pebbles was produced using 

Monte Carlo N-Particle (MCNP) Transport code. MCNP has been used in the past for calculations 

in criticality and neutron flux for pebble bed modular reactors [10, 37]. In these studies, the pebbles 

were modeled with over 10,000 fuel particles defined within a symmetric lattice filled with 

graphite. This approach defines identical pebbles, and hence, is not viable for production of a 

dataset towards use with the pebble recognition algorithm, where every pebble must be unique. To 

produce a dataset of unique, individual pebbles using MCNP, the location of each fuel particle 

must be randomized and hardcoded within the graphite pebble sphere. A MATLAB program was 

written to automate this process and output the MCNP input file. Fuel particle dimensions, fuel 

type (e.g. UO2, UCO, Pu), and enrichment vary depending on the manufacturer. The TRISO-fueled 

pebble MCNP models developed in this work are based on dimensions and material characteristics 
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taken from A.W. Mehner et al. and uses a LEU UO2 fuel kernel. The Flux Image Radiograph (FIR) 

tally in MCNP was used to simulate the radiographic images of the TRISO-fueled pebbles. This 

tally is coupled with the source definition entry, which is defined as a 150 keV X-ray beam, as 

well as the FM5 flux tally to report the energy deposition of X-rays on an image grid. The image 

grid is defined as a CsI flat panel detector with a grid spacing of 200 µm. Up to 8 2D radiographs 

could be generated in an hour on the HiperGator cluster at the University of Florida. A database 

of CT images was not developed because months of computer time would be required to produce 

1,000+ CT images. 

 

Figure 3. (left) MCNP model of a TRISO-fueled pebble using lattice structures [39] and 

(right) a MCNP radiographic simulation produced in this work. 

 The MCNP simulated radiographs consist of 400x400 pixels. To control the number of 

parameters input into the neural network model, these images are downsampled by a factor of two 

and centrally cropped, reducing the image dimensions to 160x160 pixels. These pixel values are 

normalized between 0 and 1, and then standardized by subtracting the mean and dividing by the 

standard deviation. The dataset is broken into a train set and test set, where 80% of the images are 

contained within the train set and the remaining belong to the test set. 

 Data augmentation is performed on all inputs during both training and testing stages of the 

neural network. Data augmentation is frequently implemented with deep learning algorithms to 

artificially expand size-limited datasets. The types of data augmentation performed in this work 

focused on replicating realistic X-ray measurement conditions concerning nuclear fuel. All inputs 

are randomly cropped by up to three pixels, where a single pixel has an edge size of 565.7 µm, in 

order to displace the pebbles from being located at the exact center of the image. Padding is then 

added to the image to maintain the input size. Rotations and flips are also applied to all images. In 

the extreme environment of the reactor, fuel pebbles will experience irradiation-induced shrinkage. 

This is simulated by resizing the image, and then, once again applying padding to maintain the 

original input size of 160x160 pixels. To achieve shrinkage scales less than 1.25% (2/160), a 

weighted average is taken. On the training set, small dimensional changes are progressively 

introduced. A simulated irradiation-induced shrinkage of 0.01% is introduced to the training 

images, and then increased by 0.01% every four epochs until a magnitude of 0.07% is reached. 

For the test dataset, a random shrinkage magnitude between 0.07% and 0.10% is applied to every 

image.  

 

RESULTS AND DISCUSSION 

The Pebble Recognition Algorithm is trained on a database of simulated MCNP radiographs and 

achieves a classification accuracy of 93.49%±9.35%, where the error represents differences in 

performance between multiple runs. An additional preprocessing step of Gaussian smoothing with 

3x3 kernels was then applied to the radiographs, and the network was retrained and obtained 
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improved accuracies and stability at 98.70%±2.60%. Blurring transformations are a common 

preprocessing technique applied to images before edge detection to smooth out noise associated 

with uninformative or misclassified edges, which could explain the improved performance with 

the network model. Additional parameters that can be altered to acquire a higher classification 

accuracy are the loss function as well as the distance metric associated with the loss function. This 

work uses triplet loss with Euclidean distance. Recent works with the image recognition algorithms 

ArcFace and congenerous cosine (CoCo) have reported classification accuracies as high as 99.83% 

and 99.86% through the use of additive angular margin loss with an arc-cosine distance metric or 

CoCo loss with a cosine distance metric, respectively [24, 25]. The database of TRISO-fueled 

pebble radiographs will need to be expanded before investigation into any further alterations to the 

network model to mitigate overfitting due to repeated training. 

 

Irradiation-induced Shrinkage Limit 

The expected magnitude of irradiation-induced shrinkage that TRISO-fueled pebbles will undergo 

during their tenure in the reactor core is based matrix irradiation performance tests historically 

performed on fuel pebbles. For irradiation conditions of interest (< 1400°C, < 9 ⋅ 1025 n/m2), 

shrinkage of less than 2% is expected with respect to diameter [13]. On average, pebbles transit 

the core 10-15 times during their operational lifetime [7, 8, 29]. Therefore, the ability to recognize 

the pebble fingerprint with particle shifts of 0.20% is a conservative requirement for the Pebble 

Recognition Algorithm. 

 To investigate the algorithm capabilities, shrinkage transformations of magnitudes up to 

0.35% were applied to the test data and then the irradiated test data was sent through the trained 

model. It was observed that there was no change in the classification accuracies for shrinkages up 

to 0.30%, demonstrating that the algorithm can successfully fulfill the irradiation-induced 

shrinkage requirement. To determine the shrinkage limit, the shrinkage magnitude was increased 

further to 0.35% where test accuracies quickly dropped to 52.80%±36.52% and great variability 

in the results was observed. 

 

Orientational Sensitivity and Work Towards Rotational Invariance 

The orientation of the TRISO-fueled pebble during radiation imaging plays an important role in 

the ability of the DNN model to recognize pebble fingerprints. Currently, six orientations – base 

orientation (MCNP output), clockwise rotation by 90°, counterclockwise rotation by 90°, 

horizontal flip, vertical flip, and horizontal flip followed by a vertical flip – for each pebble are 

saved to the pebble library. The performance results previously stated for the algorithm correspond 

to exact orientation matches to the pebble library. To investigate the sensitivity of the algorithm to 

image orientations, small rotations (<5°) away from the saved orientations in the pebble library 

are applied to the test dataset. A performance cost of 2.84%±4.01% is observed for rotations 0.5° 

away from the saved orientations. At orientations greater than a 1.25° rotation away from the saved 

orientations, test accuracies decrease significantly indicating that the current model is very 

sensitive to the orientation of the radiographic inputs. It is believed that the implementation of CT 

images is the most promising approach towards addressing the challenge of minimizing 

orientational sensitivity and achieving rotational invariance. Access to real data is necessary to 

overcome this challenge. 
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Figure 4. Model sensitivity to small rotations away from saved image orientations in the 

pebble library. 

 

CONCOLUSION 

A methodology combining X-ray radiography and deep metric learning with triplet loss was 

developed to identify and track individual TRISO-fueled pebbles at the entry and exit of a PBMR 

core. The Pebble Recognition Algorithm can achieve classification accuracies of 98.70%±2.60% 

and can successfully classify pebble fingerprints subject to an irradiation-induced shrinkage of up 

to 0.30%. 
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