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Abstract: 

IAEA safeguards experts use detection probability (DP) as the primary effectiveness metric for nuclear 
material inventory and flow verification activities. Most commonly, the DP is defined as the probability of 
identifying at least one defective item in a population, assuming that one significant quantity (SQ) of material 
has been diverted. The DP is calculated over a spectrum of diversion scenarios (from a few items with 
gross defects to a large number of items with bias defects), and the worst-case (lowest) DP is reported. 
Traditionally, safeguards verification activities are performed on the basis of stratified inventories or flows, 
whereby the material is grouped into strata on the basis of similar physical and chemical characteristics. 
On the basis of the measurement tools available to verify the material in the stratum, a separate sampling 
plan is established for each stratum with the aim of achieving a defined DP of detecting the diversion of 1 
SQ from the stratum. However, at facilities, sites, and sectors in which multi-stratum diversion scenarios 
are plausible, it is desirable to calculate the worst-case DP for scenarios in which 1 SQ is diverted from 
among the various strata. This paper shows that the multi-stratum DP problem can have multiple local 
minima, so a global search algorithm is appropriate. The solution is estimated by discretizing the amount 
of material diverted from each stratum. The discretized problem is solved using a brute force approach and 
a dynamic programming approach. The two approaches calculate similar answers, but dynamic 
programming is faster for problems with many strata. This work provided background and early approaches 
that Annadevula et al. have refined and expanded upon in their concurrent publication [2]. Future work is 
planned to improve the trade-off between discretization error and calculation time. 

Keywords: IAEA; safeguards; diversion detection; detection probability; constrained optimization 

 

1 INTRODUCTION 

The International Atomic Energy Agency (IAEA) has established the “timely detection of diversion 
of significant quantities of nuclear material … and deterrence of such diversion by the risk of early 
detection” as a safeguards objective [1]. In practice this objective is met through nuclear material 
accountancy, backed by inspections verifying the accountancy declarations’ accuracy. Although 
it is impossible to verify every declared item with perfect sensitivity, the inspections achieve the 
safeguards objective—risk of early detection—using random sampling. The risk is statistically 
quantified using Detection Probability (DP) and other metrics. 

The DP considered here is the probability of inspectors identifying at least one defective item from 
the declared population, assuming that one significant quantity (SQ) of material has been 
diverted. A “defective item” would be one from which nuclear material has been diverted, with the 
diversion masked by over-statement of its contents. (Alternatively, the contents would be under-



stated to mask a future diversion from a received item.) DP calculations are used for both 
inspection planning (to calculate sample sizes that are sufficient to achieve a target DP) and post-
inspection effectiveness evaluations. 

In safeguards inspections, declared inventories and flows are grouped into strata on the basis of 
similar physical and chemical characteristics. The goal of stratification is to cluster items with 
similar metrological properties and similar amounts of nuclear material. For example, large items 
are ideally stratified separate from small items, and heterogeneous material separate from 
homogeneous material. After stratifying the declared inventory or flow, inspectors establish a 
sampling plan for each stratum. The sampling plan should achieve a defined DP for all plausible 
scenarios in which 1 SQ is diverted from the stratum. 

In some facilities, material could plausibly be diverted from multiple strata, combined to constitute 
one SQ, and processed along a single acquisition path. In fact, diversion spanning multiple 
facilities, sites, and sectors is possible. Since the single-stratum diversion scenarios are special 
cases among the multi-stratum scenarios, the worst-case multi-stratum DP can never be higher 
than any included single-stratum DP. It is desirable to have an approach to calculate the DP for 
these multi-stratum scenarios, especially if the calculation can be performed on a modern laptop 
in a few minutes. 

This paper describes the foundations and early progress on multi-stratum DP calculations. The 
single-stratum DP calculation used by the IAEA is described as background. Then the multi-
stratum DP calculation is defined, including a description of why the calculation is challenging. 
Brute force and dynamic programming solutions are demonstrated for small example problems 
and compared in accuracy and computation time. 

The foundations and early progress documented in this paper are developed further in two 
concurrent publications [2][3]. 

2 BACKGROUND: Single-stratum Detection Probability Calculation 

The formulas for calculating the single-stratum detection probability are briefly re-derived here as 
background for the multi-stratum calculation. Notation and formulas are adapted from relevant 
references [4, Annex B][5, Ch. 6][6].The single-stratum DP calculation is typically explained as 
the combined probability of selection and identification events. 

2.1 Identification Probability 

The identification probability is the probability that a defective item would be identified as 
defective, if it were selected for verification. The 𝑁 items within a stratum are assumed to have 
the same amount of declared nuclear material, 𝑥. (Refer to the equal mass assumption in 

Reference [6].) The divertor’s goal is to divert an amount 𝑀 material from the stratum, usually 1 

SQ. Therefore 
𝑥

𝑀
 can be referred to as goal per item or SQ per item. 

Items within the stratum are also assumed to be verified under similar measurement conditions. 
Verifications by method 𝑚 are generally assumed to follow a Gaussian distribution with mean 𝑥 

and relative standard deviation 𝛿𝑚. Usually 𝑚 ranges from 1 to 3 because up to three 
measurement methods may be applied per stratum. The use of a relative standard deviation 
implies a multiplicative error model. 

To divert 𝑀, exactly 𝑟 items must be defected by an amount 
𝑀

𝑟
. (Refer to the equal diversion 

hypothesis of Reference [6].) The number of defects 𝑟 could be any integer from ⌈𝑀 𝑥⁄ ⌉ to 𝑁 (or 
some large number beyond which concealment would be implausible). The defects could be 



concealed by over-statement of declared inventories and outgoing shipments or by under-
statement of received shipments. In the case of over-statement, defective items have true content 

of 𝑥 −
𝑀

𝑟
. Therefore verifications of defective items will follow a Gaussian distribution with mean 

𝑥 −
𝑀

𝑟
 and standard deviation 𝛿𝑚 (𝑥 −

𝑀

𝑟
). Per IAEA procedure, the defect is identified if the 

measured value is less than 3𝛿𝑚 below the declared value 𝑥. 

For under-statement, the defective items have true content of 𝑥 +
𝑀

𝑟
. Therefore verifications of 

defective items will follow a Gaussian distribution with mean 𝑥 +
𝑀

𝑟
 and standard deviation 

𝛿𝑚 (𝑥 +
𝑀

𝑟
). Per IAEA procedure, the defect is identified if the measured value is greater than 3𝛿𝑚 

above the declared value 𝑥. 

From these Gaussian distributions, the identification probability is given by [6] 

𝑃ident(𝛿𝑚, 𝑀, 𝑥, 𝑟) = 1 − 𝛷 (
3𝛿𝑚 −

𝑀
𝑥𝑟

(1 ∓
𝑀
𝑥𝑟

) 𝛿𝑚

) , 

where 𝛷 is the cumulative distribution function of the Gaussian distribution and ∓ indicates 
subtraction for over-statement and addition for under-statement. Often the non-identification 
probability 𝛽ident ≡ 1 − 𝑃ident is preferred. 

2.2 Selection Probability 

Selection probability refers to the probability of selecting at least one defective item for quantitative 
verification. It is possible to select multiple defective items, thereby increasing the chance of 
detecting the diversion. Therefore the concept of selection probability is slightly broadened to 
consider the distribution of how many defective items could be selected. 

If a single verification method is used to verify 𝑛 of 𝑁 declared items, sampled randomly without 
replacement, then the selection probability follows a hypergeometric distribution. The probability 
of selecting exactly 𝑖 of 𝑟 defective items is 

𝑃select(𝑖 | 𝑁, 𝑟, 𝑛) =
(𝑟

𝑖
)(𝑁−𝑟

𝑛−𝑖
)

(𝑁
𝑛

)
 , 

where (𝑝
𝑘

) is the binomial coefficient with domain 0 ≤ 𝑝 ≤ 𝑘. Outside this domain, 𝑃select = 0.  

Generalizing to three methods, if 𝑛𝑚 items are verified with method 𝑚, then the joint probability 

of selecting exactly 𝑖𝑚 defective items for verification with method 𝑚 follows a joint distribution: 

𝑃select(𝑖1, 𝑖2, 𝑖3 | 𝑁, 𝑟, 𝑛1, 𝑛2, 𝑛3) = 𝑃select(𝑖1 | 𝑁, 𝑟, 𝑛1) 𝑃select(𝑖2 | 𝑁 − 𝑛1, 𝑟 − 𝑖1, 𝑛2) . . .  

. . . 𝑃select(𝑖3 | 𝑁 − 𝑛1 − 𝑛2, 𝑟 − 𝑖1 − 𝑖2, 𝑛3) . 

This formula could be expanded for an arbitrary number of methods. 

2.3 Detection Probability 

The single-stratum detection probability is the probability that at least one defective item will be 
quantitatively verified and the defect identified. It is simpler to express the non-detection 
probability: the probability that none of the defective items in the sample is identified as defective. 

This is a weighted average of 𝛽ident,𝑚
𝑖𝑚  over the 𝑃select: 



𝐷𝑃(𝑀, 𝑟) = 1 − ∑ ∑ ∑ 𝑃select

𝑛3

𝑖3=0

𝑛2

𝑖2=0

𝑛1

𝑖1=0

(𝑖1, 𝑖2, 𝑖3 | 𝑟) 𝛽ident,1(𝑀, 𝑟)𝑖1  𝛽ident,2(𝑀, 𝑟)𝑖2  𝛽ident,3(𝑀, 𝑟)𝑖3  , 

when a purely random error model is assumed; see Reference [6]. 

Note that all terms depend on 𝑟, the number of defects. (The other parameters have been omitted 

for brevity.) It is assumed that the diverting party will choose 𝑟 (within the range specified above) 
so as to minimize the detection probability. Therefore the “worst-case” DP is the conservative 
choice: 

𝐷𝑃∗(𝑀) ≡ min
𝑟

 𝐷𝑃(𝑀, 𝑟). 

The 𝐷𝑃(𝑀, 𝑟) function is neither monotonic nor convex with respect to 𝑟, so minimizing 𝐷𝑃(𝑀, 𝑟) 
is not trivial. Usually 𝐷𝑃(𝑀, 𝑟) is evaluated for many values of 𝑟. This is effective because 𝑟 is an 
integer variable and 𝐷𝑃(𝑀, 𝑟) is relatively smooth. 

Usually 𝐷𝑃∗(𝑀) is evaluated for each stratum independently, with the goal of 𝑀 = 1 SQ for each 
stratum. This is used, for example, to calculate sample sizes or evaluate inspection effectiveness. 
In some cases however, a multi-stratum DP calculation would also be desirable. 

3 PROBLEM DESCRIPTION: Multi-stratum Detection Probability 
Calculation 

The multi-stratum DP calculation extends the single-stratum calculations by allowing a variable 
goal 𝑀𝑠 for each stratum 𝑠. Multiple strata 𝑠 = 1, . . . , 𝑆 are simultaneously considered. The 
aggregate detection probability (𝐴𝐷𝑃) is the probability that the diversion is detected in at least 
one of the strata. It is calculated as one minus the product of the non-detection probabilities: 

𝐴𝐷𝑃(𝑀1, . . . , 𝑀𝑆) = 1 − (1 − 𝐷𝑃1
∗(𝑀1)) . . .  (1 − 𝐷𝑃𝑆

∗(𝑀𝑆)) . 

It is assumed that the diverting party would choose each 𝑀𝑠 so as to minimize the aggregate DP: 

𝐴𝐷𝑃∗ = min
𝑀1,...,𝑀𝑆

𝐴𝐷𝑃(𝑀1, . . . , 𝑀𝑆) . 

The minimization is constrained by the need to divert some aggregate quantity (usually 1 SQ) and 
by the nuclear material available in each stratum. Stated more formally, the constraints are 

0 ≤ 𝑀𝑠 ≤ 𝑁𝑠𝑥𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠 = 1, … , 𝑆 and ∑ 𝑀𝑠

𝑠

≥ 1 SQ . 

By construction, 𝐴𝐷𝑃∗ cannot be higher than the smallest 𝐷𝑃∗ of the aggregated strata. 

(Scenarios taking 1 SQ from an individual stratum are included in the 𝐴𝐷𝑃∗ calculation.) In 
concurrently published work, Krieger et al. investigated how much lower 𝐴𝐷𝑃∗ can be than 𝐷𝑃∗ 
[3]. 

Like the single-stratum 𝐷𝑃∗ calculation, calculating 𝐴𝐷𝑃∗ is a minimization of detection probability 

over a parameter that the diverting party controls. However, the 𝐴𝐷𝑃∗ calculation is significantly 
more challenging—not least because it requires numerous evaluations of 𝐷𝑃∗. 

3.1 Calculation Challenges and Opportunities 

This section discusses properties of the 𝐴𝐷𝑃 function. Some of these properties raise the difficulty 
of calculating 𝐴𝐷𝑃∗; others present solution opportunities that are not possible for other 
optimization problems. 



The single-stratum 𝐷𝑃∗(𝑀) is a discontinuous function of 𝑀. It is also non-smooth, in the sense 
that its derivatives are discontinuous. As 𝑀 increases, the optimal integer 𝑟 abruptly changes. 

Discontinuities in 𝐷𝑃∗ and its derivatives occur where the optimal 𝑟 changes. These properties 
are demonstrated in a later example. The aggregate detection probability 𝐴𝐷𝑃 depends directly 

on 𝐷𝑃∗, so it too is non-smooth and discontinuous. 

Similarly, 𝐷𝑃∗ is not a convex function of 𝑀, and the non-convexity passes directly to 𝐴𝐷𝑃. 
Convexity means that the second derivative is strictly positive. It would be a useful property 
because it would imply that the constrained minimization problem has no local minima besides 
the global minimum. 

Because 𝐴𝐷𝑃 is neither smooth, continuous, nor convex, many off-the-shelf optimization 
algorithms will be susceptible to converging on a local minimum, if they converge at all [7, p. 954]. 
This suggests the use of global search algorithms. Unfortunately, global search tends to scale 
poorly as the number of optimized parameters increases. For example, the brute force approach 
(described below) scales exponentially as the number of strata increases. 

Fortunately, 𝐴𝐷𝑃 is a separable function of 𝑀. More precisely, 𝐴𝐷𝑃 can be transformed to an 

equivalent aggregated non-detection probability (𝐴𝑁𝐷𝑃), which can be written in the form 

𝐴𝑁𝐷𝑃(𝑀1, . . . , 𝑀𝑆) = 1 − 𝐴𝐷𝑃(𝑀1, . . . , 𝑀𝑆) = 𝑓𝑠(𝑀1). . . 𝑓𝑆(𝑀𝑆) . 

Maximizing 𝐴𝑁𝐷𝑃 is equivalent to minimizing 𝐴𝐷𝑃. This separability property is useful because it 
means that global search approaches can cache various values of 𝐷𝑃𝑠

∗(𝑀𝑠) and then combine 
the cached values to calculate 𝐴𝐷𝑃. It also forms the foundation of the dynamic programming 
approach described below. 

The 𝐴𝐷𝑃 also increases monotonically as any 𝑀𝑠 increases. This property is not exploited in any 
of the approaches used in this paper, but it is being considered in ongoing work. 

To summarize, the aggregate detection probability 𝐴𝐷𝑃 is a piecewise-discontinuous, non-convex 

function of the continuous variables 𝑀1, . . . , 𝑀𝑆. But it is separable and monotonically increasing 
with 𝑀, which enables accelerated calculation techniques. Early calculation approaches that 
leverage these properties are described in the next section. 

4 MULTI-STRATUM CALCULATION APPROACHES 

This paper describes and demonstrates two early approaches: brute force and dynamic 
programming. In concurrent and subsequent work, Annadevula et al. have investigated advanced 
approaches, including a greedy algorithm and a multi-frontier approach [2]. 

4.1 Brute Force Approach 

The brute force approach discretizes the 𝑀1. . . 𝑀𝑆 parameter spaces and then evaluates 𝐴𝐷𝑃 for 
every combination. (Combinations summing to less than 1 SQ are discarded.) To compute 
efficiently, 𝐷𝑃𝑠

∗(𝑀𝑠) can be precalculated at the discretized values of 𝑀𝑠. This precalculation 

scales linearly with the number of strata (𝑆), and can typically run in a few seconds on a modern 
laptop. 

The brute force combination step is much faster than the precalculation step when 𝑆 is small, but 
its complexity scales exponentially with 𝑆. If 𝐺 gridpoints are compared for each of 𝑆 strata, then 

𝐺𝑆 combinations must be evaluated. For larger problems, the combinations cannot be calculated 
in reasonable time on a modern laptop. 



4.2 Dynamic Programming Approach 

The dynamic programming approach is similar to brute force, but it improves the scaling by 
combining the strata in pairs. Non-optimal combinations are discarded to reduce the number of 
combinations in the next iteration. This approach is adapted from dynamic programming 
commonly used in operations research [7 p. 438]. 

First 𝐷𝑃𝑠
∗(𝑀𝑠) is precalculated at the discretized values of 𝑀𝑠. Then every possible pair of 

discretized 𝑀1 and 𝑀2 values are tabulated. Their combined DP is calculated: 

𝐷𝑃1+2(𝑀1, 𝑀2) = 1 − (1 − 𝐷𝑃1
∗(𝑀1)) (1 − 𝐷𝑃2

∗(𝑀2)) . 

This results in a list of all of the ways that the (discretized) strata 1 and 2 could be combined. 

There are multiple pairs of 𝑀1, 𝑀2 that sum to similar amounts of material. The calculation only 

needs to keep the pair with the minimum 𝐷𝑃1+2. The other pairs could not possibly result in a 
lower 𝐴𝐷𝑃 because 𝐴𝐷𝑃 is separable. (Holding 𝑀1 + 𝑀2 constant, the pair that minimizes 𝐷𝑃1+2 

also minimizes 𝐴𝐷𝑃, regardless of how material is diverted from the other strata.) 

This removal is mathematically described as a Pareto frontier. A pair (𝑀1, 𝑀2) is “Pareto 

dominated” by another pair (𝑀1
′ , 𝑀2

′ ) if two criteria are met: 𝑀1 + 𝑀2 ≤ 𝑀1′ + 𝑀2′ and 
𝐷𝑃1+2(𝑀1, 𝑀2) ≥ 𝐷𝑃1+2(𝑀1′, 𝑀2′). Any pair dominated by another pair is removed. By taking the 

Pareto frontier, the combinations of strata 1 and 2 are reduced into a single “super-stratum” 1 +
2, with 𝐷𝑃1+2

∗  evaluated at discrete values of 𝑀1+2. 

This process of combining and culling is repeated inductively. Stratum 1 + 2 is combined with 

stratum 3 to form stratum 1 + 2 + 3; stratum 1 + 2 + 3 is combined with stratum 4 to form stratum 
1 + 2 + 3 + 4; and so forth. The number of combinations is similar at each step if the grids for 
each stratum are identical and regularly spaced. Therefore this approach scales linearly with 
respect to the number of strata. 

This dynamic programming approach appears to find the same solution as the brute force 
approach, only faster. Formal proof that the dynamic programming approach always identifies the 
global minimum 𝐴𝐷𝑃 remains for a longer follow-up publication. 

Both approaches suffer from the same limitation: the discretization of 𝑀𝑠 forces a tradeoff between 
solution precision and calculation time. If 𝑀𝑠 is discretized with 𝐺 grid-points in each stratum, then 

the 𝐷𝑃∗(𝑀𝑠) precalculation complexity scales proportional to 𝐺. For the faster dynamic 
programming approach, the precalculation dominates the calculation time. To improve this 
tradeoff, mesh refinement approaches will be considered in future work. 

It is also notable that any discretization error from the finite grid size always results in an over-
estimate of 𝐴𝐷𝑃∗. A conservative lower-bound on 𝐴𝐷𝑃∗ will be pursued in future work as well. 

5 EXAMPLES AND RESULTS 

The brute force and dynamic programming approaches are demonstrated on two problems below. 
Informal calculation times are noted to indicate order of magnitude. Precalculations of 𝐷𝑃∗ are 
parallelized on two cores; combination approaches are performed on a single core. 

The uranium enrichment example includes details of the various calculation steps. The plutonium 
example is solved with varying number of gridpoints (𝐺) to demonstrate how 𝐺 affects the solution 
accuracy and calculation time. 



5.1 Uranium Enrichment Plant 

Material at a large uranium enrichment plant could be stratified into three strata: depleted (UFD), 
enriched (UFE), and natural (UFN) UF6 cylinders. Parameters for each of these strata are 
specified in Table I. The parameters are synthetic but are representative of real-world 
calculations. 

For single-stratum calculations, the diverting party would obtain 1 SQ of high enriched uranium 
by diverting and enriching 20000 kg U from the UFD inventory, 75 kg 235U from the UFE inventory, 
or 10000 kg U from the UFN inventory. The multi-stratum calculation considers combining 
fractional diversions from among these strata, e.g. 0.5 SQ = 10000 kg U from UFD combined with 
0.5 SQ = 37.5 kg 235U from UFE. This is a drastic simplification of the acquisition paths, but it 
creates a clear example of the complexity of even small multi-stratum DP calculations. 

 

TABLE I. Stratum specifications for the uranium enrichment example. 

Variable Definition UFD UFE UFN 

𝑠 Stratum 1 2 3 

𝑀 Goal quantity, 1 SQ 20000 kg U 75 kg 235U 10000 kg U 

𝑥 Declared nuclear material content per item 5333 kg U 60 kg 235U 8000 kg U 

𝑁 Number of declared items 700 500 600 

𝑟 Number of defective items 4 to 700 2 to 500 2 to 600 

𝛿1 Relative standard deviation of method 1 15% 15% 15% 

𝛿2 Relative standard deviation of method 2 10% 2% 5% 

𝛿3 Relative standard deviation of method 3 0.5% 0.1% 0.2% 

𝑛1 Number of method 1 measurements 14 25 40 

𝑛2 Number of method 2 measurements 10 12 20 

𝑛3 Number of method 3 measurements 5 7 4 

5.1.1 Single-stratum Detection Probability 

Sample size calculations would normally be based on individual calculations of 𝐷𝑃∗(𝑀𝑠, 𝑟), with 
𝑀𝑠 = 1 SQ. These curves are plotted in Figure 1. To reduce calculation time, some values of 𝑟 

are omitted; up to 50 logarithmically spaced integer values of 𝑟 are used in each stratum. 
Calculation of these curves required 0.6 seconds. 

5.1.2 Precalculation 

To begin the multi-stratum DP calculation, 𝐷𝑃(𝑀𝑠, 𝑟) was calculated at 𝐺 = 100 equally spaced 
values of 𝑀𝑠. The results are plotted in Figure 2. This precalculation required 25 seconds. 

The precalculation results demonstrate some of the key challenges with the multi-stratum DP 
calculation. Here we refer to 𝐷𝑃∗(𝑀𝑠), the minimum 𝐷𝑃(𝑀𝑠, 𝑟) for any given 𝑀𝑠. First, as clearly 

seen for stratum UFE, 𝐷𝑃∗(𝑀𝑠) is non-convex; the second derivative is both positive and negative. 
Second, it is not smooth where 𝐷𝑃∗(𝑀𝑠) transitions from one value of 𝑟 to another. There, the 



derivatives abruptly change. Third, it is discontinuous at 𝑀𝑠 = 0.8 SQ because the 𝑟 = 1 curve 
ends. (Indeed it is not possible to divert more than 𝑥 = 60 kg 235U from a single item.) 

 

Figure 1. The single-stratum detection probability for 1 SQ diversions from each of the three 
strata in the uranium enrichment example. The worst-case 𝐷𝑃∗ is marked for each stratum. 

 

Figure 2. The precalculation results for the uranium enrichment example. Note that the 
horizontal axis is now the quantity diverted (𝑀𝑠), and the number of defective items (𝑟) is only 

on the color scale. The Pareto frontier (lowest 𝐷𝑃(𝑀𝑠, 𝑟) for a given 𝑀𝑠) is marked with black 
dots (many of which overlap). The Paerto frontier at 1 SQ is 𝐷𝑃∗ in Figure 1. 

 

 

 

 



From each stratum, the points with the lowest 𝐷𝑃(𝑀𝑠, 𝑟) for a given 𝑀𝑠 are identified. Calculating 
these Pareto frontiers required less than 0.05 seconds. The Pareto frontier points are marked as 
black dots in Figure 2. 

Note that there are no frontier points for the UFE region 𝑀𝑠 = 0.5 to 0.8 SQ. In this region, 𝐷𝑃∗ 

increases less than machine precision. Given the negligible increase in 𝐷𝑃∗, it is reasonable to 
assume that the diverting party would choose the largest 𝑀𝑠. The other values are excluded from 
the frontier. 

The frontiers were then combined using the brute force and dynamic programming approaches. 

5.1.3 Brute Force Solution 

The brute force solution evaluated every combination of the strata’s Pareto frontiers. Since the 
frontiers contain 100, 81, and 100 points (respectively), the brute force calculation requires 
810000 evaluations. The evaluations required 15 seconds. 

The resulting 𝐴𝐷𝑃∗ is 11.2%, achieved by diverting 0.202 SQ from UFD and 0.798 SQ from UFE. 
Refer to detailed results in Table II. 

 

Table II. Brute force results of the uranium enrichment example. 

Stratum Amount diverted, 𝑴𝒔 𝑫𝑷∗(𝑴𝒔) 

UFD 0.202 SQ = 4040 kg U 2.6% 

UFE 0.798 SQ = 59.8 kg 235U 8.8% 

UFN 0 SQ = 0 kg U 0% 

Aggregate 1 SQ 11.2% 

 

5.1.4 Dynamic Programming Solution 

Using the dynamic programming approach, strata 1 and 2 are combined into stratum 1 + 2. Every 
gridpoint from stratum 1 is combined with every gridpoint from stratum 2; see Figure 3. 
Combinations that are not on the Pareto frontier are removed. Pairs above 1.1 SQ are also 
removed, because they are unlikely to be relevant for calculating the 1 SQ 𝐴𝐷𝑃∗. This effectively 
calculates 𝐷𝑃1+2

∗  for the combined stratum 1 + 2. 

Then stratum 1 + 2 is combined with stratum 3 to form combined stratum 1 + 2 + 3. The process 

could be repeated for any additional strata. The final 𝐴𝐷𝑃∗ is the smallest 𝐷𝑃1+2+3
∗  for a diversion 

of 𝑀1+2+3 ≥ 1 SQ. The results match the brute force calculation, but the calculation time is less 
than 0.3 seconds.  



5.1.5 Discussion 

The two approaches calculate identical results, but the dynamic programming approach combines 
the strata 50 times faster. In this particular problem, the precalculation takes longer than either 
combination approach. 

As expected, the 𝐴𝐷𝑃∗ = 11.2% is lower than even the lowest single-stratum 𝐷𝑃∗, 13.2%. 
Interestingly stratum UFN has the lowest 𝐷𝑃∗ but did not contribute any material to 𝐴𝐷𝑃∗. By 
combining UFD and UFE, the detection probability drops from 15.5% to 11.2%.  

5.2 Plutonium Example 

Table III lists parameters for a plutonium example with four strata. Each stratum is verified with 
one or two methods. 

The single-stratum 𝐷𝑃∗(𝑀𝑠) are calculated for all integer values of 𝑟 in the specified range. For a 

diversion of 𝑀𝑠 = 1 SQ, the single-stratum 𝐷𝑃∗ is at least 90.8% for every stratum. 

The multi-stratum detection probability 𝐴𝐷𝑃∗ was calculated with various grid sizes (𝐺). The 
calculated 𝐴𝐷𝑃∗ and calculation times are plotted in Figure 4. The brute force and dynamic 

programming approaches calculated the same 𝐴𝐷𝑃∗ in all cases. However, the calculated 𝐴𝐷𝑃∗ 
decreases from 90.8% (the lowest single-stratum 𝐷𝑃∗) to 84.6% as the grid is improved. 
Unfortunately the grid cannot be refined infinitely because the calculation time becomes 
impractical. 

 

 

Figure 3. The dynamic programming approach solves the uranium enrichment example by 
evaluating all combinations from strata 1 and 2 (left, blue) and keeping only the Pareto 

frontier (black). Combinations are drawn as dots, but many overlap. This process is repeated 
to combine the 1 + 2 frontier with stratum 3 (right). 

 



 

 

Figure 4. The aggregate detection probability 𝐴𝐷𝑃∗ and calculation times for the plutonium 
example. Precalculation was performed twice for each value of 𝐺. 

As expected, the precalculation time increases proportional to the number of gridpoints, 𝐺. 

Section 4.1 predicts that the brute force calculation would scale proportional to 𝐺4 because there 
are four strata. However, in this example many points are eliminated by keeping only the Pareto 
frontier after precalculation. The calculation time is observed to scale proportional to the number 

of combinations of gridpoints, which is effectively 𝐺2.4 in this example. 

The dynamic programming combination is several orders of magnitude faster than the 
precalculation. Therefore the precalculation currently limits the scalability of 𝐴𝐷𝑃∗ calculations. 

Table III. Parameters for the plutonium example. 

Variable PU1 PU2 PU3 PU4 

𝑠 1 2 3 4 

𝑀 8 kg Pu 8 kg Pu 8 kg Pu 8 kg Pu 

𝑥 0.4043 kg Pu 8.929 kg Pu 3.501 kg Pu 3.391 kg Pu 

𝑁 23 7 94 11 

𝑟 20 to 23 1 to 7 3 to 94 3 to 11 

𝛿1 1.48% 1.26% 3.76% 1.47% 

𝛿2 — 0.86% 0.54% — 

𝑛1 3 6 48 6 

𝑛2 — 1 3 — 

 



6 CONCLUSIONS 

Safeguards evaluations must assume that the diverting party would minimize the probability of 
detection. For multi-stratum calculations, this means minimizing the aggregate detection 
probability 𝐴𝐷𝑃 by adjusting the quantity diverted from each stratum (𝑀1, . . . , 𝑀𝑆). 

The examples demonstrate that 𝐴𝐷𝑃 is a non-smooth, discontinuous, non-convex function of 

𝑀1, … , 𝑀𝑆. Many off-the-shelf algorithms would be susceptible to converging on local minima, if 
they converge at all. In this work, global minimization approaches were used to ensure accuracy. 

A brute force approach and a dynamic programming approach were demonstrated. Both 
approaches precalculate components of 𝐴𝐷𝑃 for discrete values of each variable 𝑀1, . . . , 𝑀𝑆. The 

brute force approach then evaluates 𝐴𝐷𝑃 for every combination of discrete values. This approach 
requires intractably long calculations for large problems. The dynamic programming approach 
finds the same solution as the brute force approach, only faster. A publication is planned to 
formally prove that the dynamic programming approach is always accurate. In more recent work, 
Annadevula et al. have investigated advanced combination approaches [2]. 

One key limitation of both approaches is the poor tradeoff between solution precision and 
calculation time. Both approaches over-estimate 𝐴𝐷𝑃∗, and the precision can only be improved 
by refining the precalculation grid. It is unclear what grid size to prescribe for practical calculations. 
Research is ongoing to improve the tradeoff and to estimate the precision. 

The test problems in this publication are modest in comparison to proposed multi-facility and multi-
sector calculations. Future publications are planned to specify larger example problems. 

Once 𝐴𝐷𝑃∗ can be efficiently calculated, it could potentially be used to enhance safeguards 
evaluations and sample size calculations. For example, fixed inspection resources could be 
reallocated among strata to maximize 𝐴𝐷𝑃∗. Alternatively, sample sizes could be calculated to 

reach a prescribed 𝐴𝐷𝑃∗ with minimal use of inspection resources. These applications are being 
considered as part of an ongoing collaboration for continuous improvement of IAEA safeguards. 
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