UNDERSTANDING THE LOW TEMPERATURE PROPERTIES OF RUBBER SEALS - Presentation

Year
2010
Author(s)
Matthias Jaunich - BAM Federal Institute for Materials Research and Testing
Kerstin von der Ehe - BAM Federal Institute for Materials Research and Testing 12200 Berlin, Germany
Dietmar Wolff - BAM Federal Institute for Materials Research and Testing Berlin, Germany
Holger Völzke - BAM Federal Institute for Materials Research and Testing Berlin, Germany
Wolfgang Stark - BAM Federal Institute for Materials Research and Testing 12200 Berlin, Germany
Abstract
Rubbers are widely used as main sealing materials for containers for low and intermediate level radioactive waste and as additional component to metal seals in spent fuel and high active waste containers. The save encapsulation of the radioactive container inventory has to be guaranteed according to legislation and appropriate guidelines for long term storage periods as well as down to temperatures of -40 °C during transport. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly temperature dependent. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction, due to the glass transition. Hence rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. Therefore the lower operation temperature limit of rubber seals should be determined in dependence of the material properties. The results of Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are combined with the results of standardized measurements as the compression set according to ISO 815. To reduce the test time of the standard tests a faster technique was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A fluorocarbon rubber (FKM) was selected for this investigation as it is often used for radioactive waste containers. Some materials (seals and test sheets) were purchased from a commercial seal producer and some materials were compounded and cured at BAM in form of rubber sheets.