Thermal Test Driven Pressure Build-up Inside Type-B Packages Containing Wet Radioactive Waste

Year
2013
Author(s)
Marko Nehrig - BAM Federal Institute for Materials Research and Testing Berlin, Germany
Martin Feldkamp - BAM Federal Institute for Materials Research and Testing Berlin, Germany
Claus Bletzer - BAM Federal Institute for Materials Research and Testing Berlin, Germany
Frank Wille - BAM Federal Institute for Materials Research and Testing Berlin, Germany
File Attachment
108.pdf431.27 KB
Abstract
In recent years several German approval procedures for ductile cast iron transport containers containing wet intermediate level waste were conducted. BAM, as one of the German competent authorities, was involved in the complex design assessment work with this specific issue. Thermal analysis is one part of the authority assessment work done by BAM in Germany. The radioactive contents of package designs which were not dried, only drained, consist of saturated ion exchange resin and a small amount of free water. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific points. The most interesting point, however, is the pressure build-up inside the package due to vaporization. This could be caused by radiolysis of the liquid and must be taken into account for the storage period. The inner pressure of the package leads to mechanical loads to the package body, the lid and the lid bolts. Thus, the pressure is the driving force on the gasket system regarding the activity release and a possible loss of tightness. The paper deals primarily with the pressure build-up inside the package caused by the transport regulatory thermal test (30 min at 800 °C) as part of the cumulative test scenario under accident conditions of transport. The pressure build-up is estimated by calculation in a very conservative way regarding conduction and heat radiation. Furthermore the paper discusses a conservative approach for the estimation of the resulting pressure depending on the percentage of water inside the cask. To get trustworthy results without an exact specification of the content, experimental fire tests should be conducted. However, this paper shows the difficulties of assessing casks containing wet content. From the authority assessment point of view, drying of the content could be an effective way to avoid the above described pressure build-up and the associated difficulties for the safety assessment.