NICKEL-BASED GADOLINIUM ALLOY FOR NEUTRON ADSORPTION APPLICATION IN RAM PACKAGES

Year
2007
Author(s)
G.W. Wachs - Idaho National Laboratory
J.W. Sterbentz - Idaho National Laboratory
W.L. Hurt - Idaho National Laboratory
Paul E. McConnell - Sandia National Laboratories
C.V. Robino - Sandia National Laboratories
F. Tovesson - Sandia National Laboratories
T. S. Hill - Los Alamos National Laboratory
File Attachment
82.pdf316.04 KB
Abstract
Neutron transmission experiments were performed on samples of an advanced nickel-chromiummolybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy and chromium-nickel (Cr-Ni) stainless steel, modified by the addition of boron. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the materials at specific gadolinium and boron dopant levels. The Ni-Cr-Mo-Gd alloy is envisioned to be deployed for criticality control of highly enriched U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). For these transmission experiments, test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy and 1.16 wt% boron in stainless steel. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using total neutron cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium and boron elements and in addition, verified the measured elemental composition of the Ni-Cr-Mo-Gd alloy and borated stainless steel test samples. The good agreement also indirectly confirmed that the size and distribution of the gadolinium in both the hot-top (as-cast) and Ni-Cr-Mo-Gd converted to plate was not a discriminator related to neutron absorption. Moreover, the Evaluated Nuclear Data File (ENDF VII) total neutron cross section data were accurate.