NONLINEAR FITTING OF ABSORPTION EDGES IN K-EDGE DENSITOMETRY SPECTRA*

Year
1997
Author(s)
Sin-Tao Hsue - Los Alamos National Laboratory
Michael Collins - Los Alamos National Laboratory
Abstract
A new method for analyzing absorption edges in K-Edge Densitometry (KED) spectra is introduced. This technique features a nonlinear function that specifies the empirical form of a broadened K-absorption edge. Nonlinear fitting of the absorption edge can be used to remove broadening effects from the KED spectrum. This allows more data near the edge to be included in the conventional KED fitting procedure. One possible benefit is enhanced precision of measured uranium and plutonium concentrations. Because no additional hardware is required, several facilities that use KED may eventually benefit from this approach. Applications of nonlinear KED fitting in the development of the Los Alamos National Laboratory (LANL) hybrid K-edge/x-ray fluorescence (XRF) densitometer system are described.