Classification Analytics of 239Pu and 235U Source
Signatures Using Gamma Spectral Regions

Nageswara S. V. Rao - Oak Ridge National Laboratory
David Abrecht - Oak Ridge National Laboratory
David A. Hooper - Oak Ridge National Laboratory
Jennifer Ladd-Lively - Oak Ridge National Laboratory
David Meier - Pacific Northwest National Laboratory
File Attachment
Machine learning detection methods using gamma signatures from spectral measurements of lowintensity 239Pu and 235U sources are studied. NaI detectors located at different distances from the source have been used to collect the training and independent testing data sets. The source is introduced via a shielded conduit into the facility where it is surrounded by 21 NaI detectors deployed over 6 x 6 meters area in the formation of two concentric circles and a spiral. The counts in gamma spectral regions associated with these two sources are estimated at 1 second intervals for each NaI detector, and are used as classifier features for detecting the source presence. Eight different classifiers with five basic properties — namely, smooth, non-smooth, statistical, structural, and hyper-parameter tuning — are trained and tested using the background and source measurements collected over multiple experimental runs. While the overall classifier performance improved as detectors closer to the source are used, some identically produced detectors underperformed but differently between two sources. Some classifiers achieved lower training error but their testing error based on independent measurements is higher for both sources. Overall, these results indicate significant over-fitting by these methods, and illustrate the complexity of training and selecting the machine learning methods to solve these detection problems.