Year
2023
File Attachment
Abstract
Los Alamos National Laboratory (LANL) employs a variety of filtered containers to handle nuclear
material, both inside and outside of a glovebox. A novel filter has been developed to address the
unique challenges of filtered in-glovebox nuclear material handling and storage by improving
current containment methods, enhancing resistance to water, heat, and alpha radiolytic degradation.
Criticality safety controls currently limit material amounts that can be handled inside a glovebox
without a water-resistant container to mitigate the risk of a criticality accident posed by credible
flooding accident scenarios. These limits and the current population of approved, filtered water
resistant containers pose production inefficiencies due to ergonomic and radiolytic degradation
concerns, requiring a robust, filtered, water-resistant container that can meet expanded safety basis
and criticality requirements for in-glovebox use, while reducing confusion and ergonomic risk to
workers. Creating a filter that is resistant to high temperatures and alpha radiolytic degradation,
while being hydrophobic throughout its thickness, would help address the disadvantages of these
other filtered containers when paired with a new ergonomic container design and would allow for a
single container for multi-faceted use throughout the facility.
Novel methodologies developed by LANL have been refined by NucFil, LLC (NFT), to design a
hydrophobic filter element. By improving the water pressure resistance of the filter and defining a
viable production process, it has been possible to move the technology rapidly towards
implementation. Through collaboration between NFT and LANL, the new filter withstands
temperatures upwards of 400°C and water pressures up to 72" of water column (17.92 kPa) with
less than 50 mL of water entry. Additionally, at a test flow rate of 200 standard cc/minute (SCCM),
the filter can maintain an efficiency rating of at least 99.97% with a pressure drop of less than 4" of
water column (about 1 kPa) across the filter. The developmental techniques, methodologies, and
production process will be presented, along with the filter’s characteristics, performance,
applications, and future expanded use potential.