Year
2023
File Attachment
finalpaper_423_0503105301.pdf672.77 KB
Abstract
The International Atomic Energy Agency (IAEA) employs well-established statistical methods to
assess the effectiveness of its inspection plans on a multi-defect stratum by evaluating defect detection
probability (DP). DP is defined as the chance of identifying at least one defect when a defective
stratum is subjected to a specific inspection plan. So far, deterministic methods using statistical
distributions and a stochastic method using pseudo-random generators have been developed to
compute DP within some finite time. The stochastic method is universally applicable to any inspection
scenario, and it can generate DP results with user-specified standard error. Initial attempts were made
to train machine learning (ML) models on the stochastic DP results and their respective inspection
parameters to predict DP. Inspection parameters like item types, instrument types, and identification
probabilities vary in length depending on the applied diversion strategy and inspection plan. These
variable length parameters pose a major challenge in developing ML models, which require a fixed
number of input parameters for training and prediction. The paper explores two ways to convert
variable-length parameters to a fixed number of parameters; these are zero-padding and encoding
techniques. Zero-padding limits the applicability of models to a few inspection scenarios limiting the
variable length parameters to a fixed length, and zeros are used for missing information. On the other
hand, Encoding techniques do not limit the model applicability; instead, perform certain operations
on the variable length parameters to generate new encoded data with fixed parameters that are used
to train ML models. The paper discusses the zero-padding scheme and two different data encoding
techniques and compares the performances of ML models trained on said techniques. The R2 scores
of zero-padded models and encoded models are evaluated on unseen instances of the test dataset.
Upon comparison, show the superior generalization power of encoded models over zero-padded
models in predicting DP.