

Aspects on Long Term Storage of Used Nuclear Fuel and High Active Waste in Germany

Holger Völzke, Dietmar Wolff

BAM Federal Institute for Materials Research and Testing Division III.4 "Safety of Storage Containers" 12200 Berlin, Germany

Holger Völzke BAM III.4

Interim Storage Facilities

NPP Unterweser with cask storage facility (E.ON)

STEAG-design with massive concrete structures

WTI-design

NPP Emsland cask storage facility (RWE)

Dry Spent Fuel and HAW Storage Casks

- <u>The Storage Concept (based on German Reactor Safety</u> <u>Commission (RSK) guidelines from April 2001)</u>
- Accident safe dual purpose metal casks with
 - Type B qualification and certification
 - Two independent sealed barriere lids
 - Permanent monitoring of cask tightness
- Storage period 40 years
- Casks in a storage building for weather protection and additional shielding

Main Cask Design Criteria

- Nuclear safety (subcriticality)
- Radiation protection (shielding)
- Decay heat removal
- Site specific accident safe cask design (integrity, leak-tightness)
- 40 years cask durability

Main Storage Cask Design Features

- Dual purpose for transport and storage operation
- Monolithic cask body made of ductile cast iron (alternate cask designs made of forged steel cylinder with welded bottom plate)
- ✤ Dimensions
 - Length : 4.0 to 6.0 m
 - Diameter : 1.5 to 2.5 m
 - Wall thickness: 0.25 to 0.45 m
- Cylindrical holes filled with polyethylene neutron moderator in cask side wall
- Double lid system with metal seals and permanently monitored pressure between bolted lids
- ✤ Vacuum dried and helium filled (≈800 hPa) cask interior

Example: CASTOR® V cask design by GNS

Cask Storage History

First stored casks:

- CASTOR[®] Ic-Diorit (ZWILAG, CH) since 1983
- CASTOR[®] V/21 (Surry, USA) since 1985
- CASTOR® THTR/AVR (TBL Ahaus) since 1992
- CASTOR[®] THTR/AVR (Jülich) since 1993

• CASTOR[®] V/19, CASTOR[®] Ic, CASTOR[®] HAW 20/28CG (TBL Gorleben, D) since 1997

Cask storage periods up to 27 years (18 years in Germany)

Current storage licenses ending:

- TBL Gorleben \rightarrow 31.12.2034
- **TBL Ahaus** \rightarrow 31.12.2036 (first CASTOR[®] THTR/AVR casks \rightarrow 2032)
- On-site facilities \rightarrow 2042/43

Availability of a repository is open so far

- \rightarrow Gorleben salt dome vs. new site selection procedure
- \rightarrow Investigation and construction work needs at least 15 years from now
 - ightarrow Availability beyond 2025
 - \rightarrow Interim storage periods may need to be extended in the future

Driving ageing forces on storage casks

Gamma radiation

Neutron radiation

Decay heat

Environmental effects from outside: moisture, air pollution

Mechanical stresses: fuel rods, bolted lids and trunnions, metal seals

Materials

Metals (ductile cast iron, different steel types, basket materials)

Polymers (neutron shielding, auxiliary seals, cavity sealing)

Ageing effects

Degradation by radiation

Mechanical degradation (relaxation, creeping)

Corrosion

Required standard helium leakage rate

Q_{µ₀} < 10⁻⁸ Pa⋅m³/s

Investigation of Metal Seal Resistance

Typical cask seal of the Helicoflex® type

9,9 mm (Al) 9,7 mm (Ag) 9,9 mm (Al) 9,7 mm (Ag) 9,9 mm (Ag) 9,7 mm (Ag) 9,9 mm

Test series to demonstrate long-term resistance

- (1) CEA Atomic Energy Commision (France):
 - 1973 1984 six test seals (1,9 m and 3.6 m outer Ø) with > 650 thermal cycles between ambient temperature (+20°C) and +130/150°C to increase ageing mechanisms
 - since 1984 (25 years) continuation of test series at ambient temperature (+20°C) with helium leakage rate measurements twice a year
- (2) CRIEPI Central Research Institute of Electric Power Industry (Japan):
 - ✤ since 1990 two full-scale test seals (outer jacket of AI and Ag) at 160°C

Results so far: no significant changes in leakage rates

BAM corrosion tests with water in the gap between inner and outer seal jacket since 2001

- \rightarrow boronated pool water (2400 ppm)
- \rightarrow 10⁻³ mol sodium chloride dissolution

Result: no leakage rate increase so far!

Leakage rate measurements with seals prepared with defects in the outer jacket

Result: no leakage rate increase!

Holger Völzke BAM III.4

Oct. 07, 2010

BAM test setup for metal seal investigations with continous leakage rate measurements

Characteristic load – deflection curve of a Helicoflex[®] metal seal (Ag) and correlation with the helium leakage rate

- $Q_{\text{He/St}} = \leq 10^{-8} \text{ Pa} \cdot \text{m}^3 \cdot \text{S}^{-1}$
- •Y₀ = Achievement of Q_{He/St} during pressing process •Y₁ = Exceeding Q_{He/St} during load relieving
- •Y₂ = Optimal operation point according to manufacturers specification
- •r_u = usable resilience

Reduction of seal pressure force and useable resilience as a function of time and temperature Helicoflex[®] metal seal with outer aluminum jacket

Extrapolation of seal force decrease over 40 years under constant conditions

Ageing Effects of Storage Cask Polymer Components

Neutron shielding components

- ★ Temperatures up to 160 °C (→ decrease during storage)
 - Thermal expansion
 - Structural changes from semi-crystalline to amorphous
- ☆ Radiation (→ decrease during storage)
 - → hydrogen separation by gamma radiation causes structural damages and/or crosslinking
- ✤ Mechanical assembling stresses
 - → Stress relaxation
- * Focus on neutron moderator material

Elastomeric auxiliary seals

- ✤ Materials:
 - Viton
 - EPDM (ethylene propylene diene monomer (M-class) rubber)
 - Silicone
- ✤ Low temperature and long-term behavior

Ultra-high molecular weight <u>polyethylene</u> (UHMW-PE)

Matthias. Jaunich, et al.

Understanding the Low Temperature Properties of Rubber Seals

Oral Presentation 169 in Session T41 Friday, Oct. 08, 9:20 a.m.

Investigated Materials

- High molecular weight polyethylene (HMW-PE) Lupolen 5261Z
- Ultra-high molecular weight polyethylene (UHMW-PE) GUR 4120
- Gamma irradiation dose: 600 kGy at 20°C under inert conditions

Used methods for determining the structural differences

- > Thermoanalytical methods
 - → Differential Scanning Calorimetry (DSC)
 - → Thermomechanical Analysis (TMA)
 - → Thermogravimetric Analysis (TGA)
- Optical methods
 - → Fourier-Transformation-Infrared-Spectroscopy (FT-IR)
- > Weighing methods
 - \rightarrow density gradient column
 - \rightarrow degree of crosslinking

Oral Presentation 173 in Session T25 Wedenesday, Oct. 06, 11:20 a.m.

4. Summary and Outlook

- > Dry cask storage of SF and HAW in Germany is well established for up to 40 years.
- Long-term performance of all safety relevant cask components was evaluated prior to licenses and no failure occurred during operation so far.
- Further long-term investigations of metal seals and polymer components are carried out (by BAM) to gain increased knowledge for better predictions, perhaps for necessary extended storage periods.
- Currently, the German Nuclear Waste Management Commission (ESK) Committee on Waste Conditioning, Transport and Interim Storage (AZ) – develops new guidelines for periodic safety inspections of interim storage facilities including ageing mangement.
- Transport after storage is an important issue because …
 - Transportation after storage is essential due to the limited lifetime of any interim storage facility;
 - Transport regulations do not consider long-term dry storage as specific operation conditions for transport casks and required periodic inspections can't be performed in full extent due to loaded and sealed casks which are - on the other hand - under permanent surveillance;
 - Transport after long-term storage requires aged material and cask properties for complete Type B
 safety demonstration;
 - Transportation issues can't be ruled by interim storage licenses due to different legal areas (in Germany: Regulations for the Transportation of Dangerous Goods vs. Atomic Law). Thus, transport regulations should be modified with respect to (dual purpose) casks for transport <u>and</u> (interim) storage.