

LOGISTICS



PATRAM 2010 - October 2010 - Presentation N°96 -p.1



# CFD design and mock up test for heat removal using cylindrical rods mounted on a vertical plate

# O. Bardon, J. Bellanger, N. Zhari





### CONTEXT

#### Need for high capacitive casks

- High burn up + short cooling time (60 GWd/tu, 5%enrichment, 2 years cooling time)
- Consequence : High thermal load up to 6 kW/assembly ->70 kW heat load for 12 spent fuel assemblies in a cask
- Maximum thermal power may sometimes be imposed by cooling performance with unexpected orientation of fins after accidental conditions

#### Need for improved performance of heat convection

- In normal transport conditions
- In any configuration (horizontal / vertical)
  - Transport / storage
  - Accidental configuration after 9m drop

#### What we know about cask fin surfaces

Axial fin shape : good for storage / not optimal in transport

Radial or annular fin shapes : good for transport / not optimal for vertical cask LOGISTICS

# Our innovative idea: Rod shaped fins

#### Main requirements

- Maximum diameter size available (defines max rod length)
- Use standard diameter and material of rods

#### Main benefits are

- Adjustable increase of cask surface (depending on number and length of rods)
- Relative independence of cask orientation : to be verified

#### Main difficulty is

- How to optimize the arrangement of the rods in the given space to get the best performance satisfying all the criteria?
  - CFD (computational fluid dynamic) optimization
  - Mock up and thermal tests validation





AREVA



# **CFD** design



# **CFD model**

<sup>9</sup> 3D Model is built with a unit cell (x pitch, y pitch) limited by two symmetric conditions and repeated in the g direction to get the correct overall height (2m)

- Used of classic turbulent model K/ε with high Reynolds law functions
- Imposed heat (W/m2) representative of the cask load at the back of the plate / ambient temperature fixed far from plate
- Main result concerns <u>average plate temperature</u>: The lower the averaged plate temperature is, the better the configuration is.
- Performance = coefficient ratio A/A\* : improved heat convection coefficient relative to flat plate with no fins. The best configuration is defined by the highest coefficient ratio A/A\*
- Calculations are carried out for defined y pitch with various x pitch -> graph for tracking maximum performance in the fixed volume



View of extended 3d model (solid part)



# **CFD model: calculation result**



#### Key results

- Each y pitch corresponds to an x pitch optimum which maximizes A/A\* (known result)
- Maximum performance increases with y pitch reduction but for larger x pitch
- Performance to flat plate may be increased about 7 to 8 times

# **CFD model: calculation result**



#### Optimal path

- Each gain in maximizing one orientation over performance for x = y pitch will lead to an almost identical same loss in the inverse orientation
- Rod quantity increases rapidly when y/d < 3.2 and x/d opt > 6.7

# **Conclusion of CFD design**

- Maximum performance can be increased compared to reference case where x =y pitch (A/A\*max = 6) but it will come at a cost of a reduced performance in the inversed orientation
- The choice of x / y pitch must be consistent with both criteria in normal and inverse orientation
- x pitch = 2 y pitch is a good compromise between performance in normal and inverse orientation and number of rods



# **Thermal tests**



# **Configuration tests and objectives**

#### Configuration tests:

Close to optimal calculated with x pitch ~ 2 y pitch (48 mm or 56 mm and y pitch = 24 mm)

#### Main objectives:

- Check that required performance is reached
- Comparison to calculation : check the predictibility of CFD calculation for variation of performance relative to pitch sizes and orientation





### Test mock up





- Rods fins welded on a vertical plate (2m high / 0.5m wide) /black coated with a known high emissivity
- 20 thermocouples / 2 ambient temperatures / infrared thermography
- Thermal power controlled by four flexible heating mats (stuck to back of the plate) and insulated from ambient thermal losses
- Lateral foil deflector to prevent lateral aspiration flow

## **Calculation compared to test results**

#### **Calculation results**

| A/A*": increase<br>performance compared to<br>vertical flat plate<br>*based on T <sub>averaged</sub> | y pitch/d |     | ••••       | •          |
|------------------------------------------------------------------------------------------------------|-----------|-----|------------|------------|
| x pitch/d                                                                                            |           | 4   | 8          | 9.3        |
|                                                                                                      | 4         |     | <b>6.5</b> | <b>6.3</b> |
| • • •                                                                                                | 8         | 7.5 |            |            |
| • • •                                                                                                | 9.3       | 7.1 |            |            |

#### **Test results**

| A/A*": increase<br>performance compared to<br>vertical flat plate<br>*based on T <sub>averaged</sub> | y pitch/d |     | •••• | •   |
|------------------------------------------------------------------------------------------------------|-----------|-----|------|-----|
| x pitch/d                                                                                            |           | 4   | 8    | 9.3 |
|                                                                                                      | 4         |     | 5.7  | 5.5 |
| • • •                                                                                                | 8         | 6.4 |      |     |
| •:•                                                                                                  | 9.3       | 6.1 |      |     |

- Over estimate of about 15% of performance compared to test (but the objective performance is reached)
- Almost same variation of performance with y pitch (-3% (calc) / -3.5%(exp)), and with x pitch (-5%, -4.5%)
- The orientation change is correctly predicted (-13%(calc) / -10%(exp))
- Gap between calculation and test is acceptable
- Tests confirm the predictibility of the calculation and the precision of the absolute value with less than -15%

### Conclusion

- Solution for heat removal in both horizontally and vertically orientated casks using long rod shaped fins has been developed and tested
- CFD helped to define:
  - Optimal arrangement of rods for maximal performance in horizontal configuration while controlling performance in the vertical configuration
  - Design parameters to reach expected performance for both configurations (choice must be consistent with thermal criteria of sensitive components in both NCT and ACT)
- Comparison with mock-up tests shows a good correlation between tests and calculations which validates the concept
- A complementary realistic cylindrical mock-up has been built and tested which confirmed the performance on the plate mock-up (not shown here)
- Further investigations should concern industrialization of this innovative solution



# **APPENDIX**



### **Effect of diameter on optimum**



# Analytical result for equilateral pitch in laminar flow



Increase of global heat convection coefficient compared to flat vertical plate for equilateral pitches



#### LOGISTICS

AREVA

### **Comparison calculation / test**

Increase performance of global heat convection coefficient compared to flat vertical plate (d = 6 mm)



# **Test results / compared to calculation**





### CONTEXT

- OUR IDEA : ROD SHAPED FINS
- CFD DESIGN
- THERMAL TESTS
- CONCLUSION

