

TNI Transportability Tool

A Software to Calculate the Transport Feasibility of Used Fuel Casks

Mikaël de BIASI

Context – Set of Problems – Stakes

Transportation of nuclear materials: a risky activity

- Radioactive materials are close to the environment
- Many risks : accidents, terrorism, loss...

Ways to prevent risks:

- The cask itself
- shielding
- confinement
- sub-criticality

Calculation Methods and Codes

- Use of three-dimensional Monte-Carlo codes coupled with evolution codes for all radioprotection calculations
- Shielding calculations are composed of two evaluation steps
 - radioactive sources
 - dose rates
- Codes used at TNI for the evaluation of radioactive sources
 - ORIGEN-2[~]
 - ORIGEN-S / for the irradiated fuel
 - DARWIN-2
 - APOLLO-2 for the activation products on the fuel assembly ends

Calculation Methods and Codes

Evaluation of dose rates around the cask are made with the three-dimensional Monte-Carlo code TRIPOLI-4

- Calculation method without approximations
- Three-dimensional geometry description
 - Eliminates approximation due to the modeling of the cask and content
 - <u>Calculation in precise places such as trunnions</u>
- Detailed description of the sources (geometry and spectra)
- Point wise cross section representation
- Calculation improvements are made without significant increase of computing time
- Using this method, the calculated dose equivalent rate values are very close to actual measurements around a package

Validation Process – Benchmarking

- The TNI shielding calculation method is validated by comparisons between the calculated and measured dose rates on casks
 - Several measurement experiments carried out on various casks
 - Full dose rate cartography around the cask when possible
 - Use of precise and well-calibrated instruments

Gamma-rays:

- Babyline

Neutrons:

- Cramal
- Berthold

Validation Process – Benchmarking

Summary of differences between measured and computed dose rates in the middle of the TN[®]112 cask in <u>radial position</u>

		Contact		2 metres			
Desition	Measurements	Calculations	Differences*	Measurements	Calculations	Differences*	
rosition	(10^{-2} mSv/h)	(10 ⁻² mSv/h)	(%)	(10 ⁻² mSv/h)	(10^{-2} mSv/h)	(%)	
0°	8.97	9.52	+6.2%	2.44	2.60	+6.6%	
45°	8.69	9.74	+12.0% 2.22		2.53	+14.1%	
90°	9.23	9.62	+4.3%	2.83	2.54	-10.2%	
135°	9.43	9.58	+1.6%	2.70	2.56	-5.2%	
180°	9.13	9.51	+4.1%	-	2.57	_	
225°	8.80	9.82	+11.7%	2.73	2.53	-7.5%	
270°	9.23	9.50	+2.9%	2.88	2.54	-11.7%	
315°	8.01	9.72	+21.4%	2.38	2.55	+7.1%	
Average	8.94	9.63	+7.7%	2.60	2.55	-1.7%	
Max	9.43	9.82	+4.2%	2.88	2.60	-9.7%	
Min	8.01	9.50	+18.6%	2.22	2.53	+14.1%	

* (calculated/measured -1) \times 100%

Transportability A Software Tool

Transportability – Overview

Transportability is an internal software developed by TNI to manage: spent fuel assemblies, optimisation of loading plans, feasibility of transport

Software functionalities

- Inventory of the fuel assemblies per nuclear plant unit
- Creation of loading plans in real time (fuel batch, position in basket)
- Check of transport feasibility for a given date
- Schedule earliest transport date for a given fuel batch

Use

- Transportability falls under the responsibility of the Calculation Department
- Transportability is used by the shipping agents and sometimes by the customers

All transport scenarios are validated before expedition LOGISTICS

Transportability includes four steps:

- Input of data: the utility fuel assembly database
- Creation of a loading plan with the chosen fuel assemblies
- Choice of cask model, internal arrangements and transport date
- Calculation in two steps

Transportability – Addition of a Model

- The TN®112 can contain 12 MOX spent fuel assemblies per shipment
- The TN®112 will be input into Transportability following a three-step method
 - Modelling
 - Measurements
 - Model fitting

Transportability – Model Adjustment

Methodology

- Determine the average ratio Measurements/Calculations
- Apply this ratio as a factor for each point
- Apply an additional margin to the gamma-ray and neutron dose rates to cover measurement uncertainties
- Example: Comparison between measured and computed dose rates at 2 metres from the TN[®]112 cask

			TRI3.79		TRI3.84				
	Position	Measurements (10 ⁻² mSv/h)	Calculations (10 ⁻² mSv/h)	Ratio M/C	Measurements (10^{-2} mSv/h)	Calculations $(10^{-2} \text{ mSv}/\text{h})$	Ratio M/C		
	0°	1.92	2.03	0.948	2.44	2.73	0.893		
	45°	2.44	2.20	1.108	2.22	2.68	0.826		
	90°	2.46	2.27	1.083	2.83	2.73	1.037		
	135°	2.10	2.13	0.988	2.70	2.69	1.004		
	180°	-	2.13	-	-	2.73	-		
	225°	1.92	2.05	0.936	2.73	2.70	1.011		
	270°	2.10	1.93	1.088	2.88	2.74	1.051		
LOGISTICS	315°	2.36	2.02	1.169	2.38	2.69	0.885		

Transportability – Model Adjustment

- Example of model adjusting for the TN[®]112 cask based on two measurement experiments
 - Calculation of the average ratio Measurements/Calculations to determine the adjustment factor for each point
 - Application of an additional 20% margin to the gamma-ray and neutron dose rates to cover measurement uncertainties

Results at 2 metres from the TN[®]112 cask in radial position

Position	Fitting Factor (ff)	Neutron Dose Rates (10 ⁻² mSv/h)	Gamma Dose Rates (10 ⁻² mSv/h)	Neutron × ff + 20%	Gamma × ff + 20%	Final tuned Dose Rates (10 ⁻² mSv/h)	Measure- ments (10 ⁻² mSv/h)	Diffe- rences (%)
0°	0.920	0.78	1.95	0.87	2.15	3.01	2.44	+23.7%
45°	0.967	0.79	1.90	0.91	2.20	3.11	2.22	+40.5%
90°	1.060	0.79	1.94	1.01	2.47	3.47	2.83	+22.7%
135°	0.996	0.79	1.90	0.94	2.27	3.22	2.70	+19.1%
180°	-	0.79	1.94	-	-	-	-	_
225°	0.974	0.79	1.91	0.92	2.23	3.16	2.73	+15.5%
270°	1.069	0.79	1.95	1.01	2.50	3.52	2.88	+22.1%
315°	1.027	0.78	1.91	0.97	2.35	3.32	2.38	+39.3%

Conclusion

Transportability is an innovative calculation tool

- Casks can be loaded with used fuel assemblies reaching 80% of the radioprotection criteria
- Radiological performance of the TNI transport casks is improved
- Increasing source intensities can be anticipated and compensated for
- General safety of the transport of radioactive materials is significantly enhanced

LOGISTICS

AREVA

LOGISTICS

AREVA

Calculation Methods and Codes

AREVA

PATRAM 2010 - October 2010 - Presentation N° -p.16

Calculation Methods and Codes

TN®112 TRIPOLI 4.3 model: axial cross section

AREVA

Création	d'un Lot			
Lot	Référence ACL : Example_ Tranche : TRI3	PATRAM Dai	te du document : <mark>27/09/201</mark> Référence Client :	
Eléments	combustibles disponibles : 678		éments combustibles affecté	s au Lot : 8
○ Non affectés ○ Affectés, nor ○ Transportés ④ Tous	FX1JRM FX1JRN FX1JRP FX1JRP FX1JRR FX1JRT FX1JRV FX1JRV FX1JRV FX1JRX FX1JRX FX1JRZ FX1JTA FX1JTC FX1JTD		FXP3MA FXP3MC FXP3MD FXP3MK FX139E FX139F FX139G FX139L	

46819

47432

47648

44049

9,67

9,79

9,82

9,85

0,83

0,85

0,85

0,83

Accepté

Accepté

Accepté

Accepté

Oui

Oui

Oui

Oui

Sain

Sain

Sain

Sain

<u>back</u>

₹ Plans de chargement : [0]

UOX

UOX

UOX

UOX

3,71

3,71

3,71

3,71

0

0

0

0

FX139E

FX139F

FX139G

FX139L

PATRAM 2010 - October 2010 - Presentation N° -p.20

<u>back</u>

AREVA

A					A					CURCLAS	123650656
	Calcu	uls de	puissa	ances	therm	niques	et/ou	de dé	bits de	dose	
$\frac{1}{2a} + \frac{1}{2a} $	Plan de chargeme	Plan de chargement : Loading_PATRAM Plan de Lot : Example_PATRAM chargement Tranche : TRI3 Créateur : Mikael DE BIASI Date de création : 27/09/2010									
a service		Emb	Date : allage :	01/01/20 TN12/2B Sélection TN12/24	12 Tez		Panier :	927			
FU	Critèr	re de trans	Calcul 🗹 🔽	TN12/28)F-(Kam)-T	N12/2-B-9	ermiques 927 MOX-E	EC sains-no	or 💌	Modèle : TN	Calculs DE	D A SEC F(💌
	par E	СМОХ	par E(C UOX	par 1/4	secteur	paro	olis	Contact	1m	2m
	Min.	Max.	Min.	Max.	Min.	Max.	Min,	Max.	Max.	Max.	Max.

3

AF 01 02 03 04 05 AC

Image d'une coupe radiale :

Image des plans de coupe :

★ F	Répor	ises ur	itaires	neutron	et gamma de capture : `			
5	N	<u>X</u> 🖻	18	Σ│ <mark>⊉</mark> ↓	- 👬 - 🖹 🐐 🗎] 🛛		
	A	В	С	D	E	F	G	H
1	N° EC	N° Plan	N° Point	Distance	Fission spontanée Neutron	Fission spontanée Gamma de capture	Alpha N neutron	Alpha N gamma de capture 💳
2	1	AC	1	0	1,17665E-03	8,99975E-04	1,46731E-03	1,01690E-03
3	1	AC	1	1	3,36705E-04	2,77061E-04	4,21675E-04	3,12541E-04
4	1	AC	1	2	1,33421E-04	1,57610E-04	1,67484E-04	1,77885E-04
5	1	AF	1	0	1,17966E-02	4,06852E-03	1,40296E-02	4,30457E-03
6	1	AF	1	1	3,58696E-03	1,13816E-03	4,27392E-03	1,20137E-03
- 7 -	1	AF	1	2	9,96090E-04	5,26197E-04	1,18771E-03	5,55095E-04
8	1	1	1	0	1,53880E-02	8,91777E-04	2,07976E-02	9,47331E-04
9	1	1	1	1	2,01069E-03	3,58514E-04	2,71879E-03	3,80549E-04
10	1	1	1	2	8,68474E-04	3,17546E-04	1,17584E-03	3,37042E-04
11	1	1	2	0	1,53880E-02	8,91777E-04	2,07976E-02	9,47331E-04
12	1	1	2	1	2,01069E-03	3,58514E-04	2,71879E-03	3,80549E-04
13	1	1	2	2	8,68474E-04	3,17546E-04	1,17584E-03	3,37042E-04
14	1	1	3	0	1,53880E-02	8,91777E-04	2,07976E-02	9,47331E-04
15	1	1	3	1	2,01069E-03	3,58514E-04	2,71879E-03	3,80549E-04
16	1	1	3	2	8.68474E-04	3 175/6E-0/	1 1758/F-03	3 37042E-04
	\ Feu	ille1	•/			•		 _ //
					Suppi	rimer Modifier Rendre appli	cable Fer	mer

AREVA

PATRAM 2010 - October 2010 - Presentation N° -p.22

<u>back</u>

