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Introduction

Storage of Nuclear Fuel

No burnup restriction

Transportation of Nuclear Fuel

Restricted for burnup >45 GWd/MTU
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Probability of Criticality Event during Rail 
Transportation

Description Freight Trains 

Train Accidents per Train-Mile (All Accidents, All Speeds, All Track 
Classes), 2000 - May 2006. 2.7E-06 

Probability of Accident of Interest, Given Any Accident (>2% Strain and 
Immersion) per Modal Study 7.8E-09 

Frequency of Accidents of Interest for Criticality/Train-Mile 2.1E-14 

Assumed Average Number of Miles per Shipment 2,000 

Frequency of Accidents of Interest for Criticality/Shipment 4.2E-11 

Likelihood of Shipping a Misloaded Spent Fuel Cask 2.6E-06 

Likelihood of an Accident with a Potential for Criticality/Shipment 1.1E-16 
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Misloading of Under-burned and Fresh Fuel –
Impact on Nuclear Reactivity (Cask keff)
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Misloading – Fresh versus Once-burned 
Assemblies
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Fuel Reconfiguration – Worst Case Scenarios
NUREG/CR-6835 (September 2003)

Table 6:  Maximum increase in keff for each fuel failure scenario*

Scenario MPC-24 GBC-32 MPC-68
(fresh fuel) (45 GWd/MTU) (fresh fuel)

--------------------------------------------------------------------------------------------------------------------------------
Single missing rod 0.0013 <0.0010 0.0036
Multiple missing rod 0.0140 0.0130 0.0120

Cladding removed from all fuel rods 0.0468 0.0349 0.0441

Fuel rubble (no cladding) 0.0563 0.0233 0.1149

Assembly slips 20 cm above or
below neutron poison panels 0.0021 0.0435 0.0362

Variation in pitch (without cladding) 0.0703 Not calculated 0.1225

* “Although the scenarios considered go beyond credible conditions, they represent a theoretical 
limit on the effects of severe accident conditions” (NUREG/CR-6835, p. 1)
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Fuel Reconfiguration – Worst Case Scenarios

Δkeff vs Fuel Rod Pitch,
45 GWd/MTU 
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Fuel Reconfiguration – Worst Case Scenarios
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Fuel Damage Evaluation – Best-Estimate 
Approach
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Fuel Damage Evaluation – Best-Estimate 
Approach

• The fuel column, as an integral 
part of high-burnup spent fuel 
rods, plays the primary role in 
limiting cladding stresses

• The fuel-cladding gap is found 
to be the major protagonist for 
failure initiation that has the 
potential to propagate to 
through-wall fracture

• Using highly conservative 
assumptions on the role of the 
gap in inducing through-wall 
failure through-wall failure 
probability: ~1E-5/rod
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Recap

• Normal configuration of cask contents: keff <0.95
• Probability of criticality event during rail transportation accident: 

~10-16/shipment
– Probability of accident
– Conditional probability associated with accident severity and intrusion 

of moderator
– Probability of one misloaded assembly in the cask

• Conservatisms
– Multiple misloadings of severely under-burned or fresh fuel
– Administrative controls (dedicated trains)

• Fuel relocation
– Cannot rule out small increases in keff, but increases in keff are unlikely 

and less than safety margin
– Best-estimate analyses show limited assembly damage
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Conclusion

• No credible combination of rail transportation accident 
events and fuel misloading or reconfiguration can result 
in a critical configuration

• Overall transportation risks include non-radiological risks 
that are directly proportional to the number of shipments
– Misallocation of regulatory requirements associated by 

radiological risks can lead to greater overall risks by 
overly restricting payloads

• High-capacity rail casks represent the lowest risk for 
transporting commercial spent nuclear fuel, regardless of 
the enrichment or burnup of the fuel
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