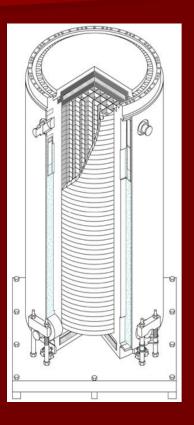

INVESTIGATION OF SPENT FUEL INTEGRITY IN DRY STORAGE AT JAPANESE NUCLEAR POWER PLANTS


> Takeshi Fujimoto The Japan Atomic Power Company, Tokyo, Japan

A Japanese first spent fuel interim storage facilities (1)

- The facility is owned by Recyclable-Fuel Storage Company (RFS)
- A joint company of Tokyo Electric Power Company (TEPCO) and the Japan Atomic Power Company (JAPC)

A Japanese first spent fuel interim storage facilities (2)

- Facility Name: Recyclable-Fuel Storage Center (RFSC)
- Beginning of Operation: July, 2012
- Storage system: Dual purpose (storage / transport) metallic dry cask
- Storage capacity: About 3,000 ton-U of LWR spent fuel (max. 288 casks)
- Storage period: Max. 50 years
- A hot-cell for opening the cask: None

The specification of spent fuel assemblies stored in RFSC

Fuel type		Cladding	Burn-u	p (GWd/t)	Cooling period		
		material of fuel rods	Maximum for fuel assembly	Average for replacement fuel	TEPCO	JAPC	
BWR	8 x 8	Ziroolov 2	40	27.5			
	New 8 x 8	Zircaloy–2	40	28.5/29.5	18 years and over		
	New 8 x 8 Zr Liner	Zircaloy–2	40	33		8 years and over	
	High Burn- up 8 x 8	(Zirconium liner)	50	39.5			
PWR	39GWd/t	Zircolov -4-	39	31		15 years and over	
	48GWd/t	Zircaloy–4	48	43			

Purpose of the investigation (1)

RFSC is not equipped with a hot-cell for opening the primary lid of the cask.
A visual inspection of spent fuel assemblies is usually carried out before spent fuel transportation in Japan.

it is necessary to confirm spent fuel integrity by the same level of confirmation as visual inspection before transportation after the interim storage

Purpose of the investigation (2)

- For this purpose, we will establish a quality control system of metallic dry casks from manufacturing to the end of storage.
- we are continuously investigating spent fuel integrity on the actual spent fuel dry storage at the nuclear power plants and the research facilities.

Investigations at the Japanese nuclear power plants (1)

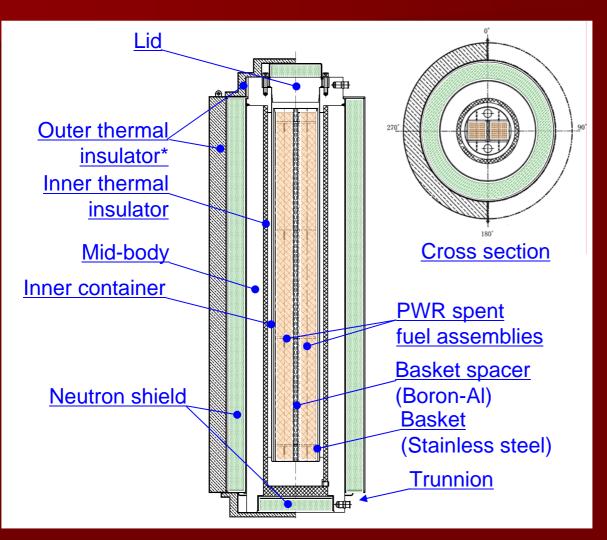
Site	Fukushir	Tokai No.2			
Fuel type	BWR 8 x 8	BWR New	BWR New		
		8 x 8	8 x 8 Zr Liner		
Burn-up	28 GWd/t	32 GWd/t	33.5 GWd/t		
Year of inspection	2005	2000	2009		
Dry storage	10 years	10 years 5 years			
period	TO years	J years	7 years		
Rod Temperature	Annroy 90 ($ $		Approx. 165 ° C		
Cover gas sampling	Kr-85 was not detected.				

Investigations at the Japanese nuclear power plants (2)

Site	Fukushim	Tokai No.2			
Eucl type	BWR 8 x 8	BWR New	BWR New		
Fuel type		8 x 8	8 x 8 Zr Liner		
Visual inspection	The appearance of spent fuel remains the same as observed at the storage starting.				
Before storage	ETT-8.28 FEBRUS SIDE D				
At the inspection	H7C.8 163215 SIDE A	H7.11.17 F4F118 SIDE A			

Investigation at Idaho National Laboratory (INL)

Site	INL		
Fuel type	PWR 15 x 15		
Burn-up	35.7 GWd/t		
Year of inspection	2005		
Dry storage period	20 yeas		
Rod Temperature	344 ° C		
Cover gas sampling	<u>Kr-85 was not</u> <u>detected</u>		


Castor V/21

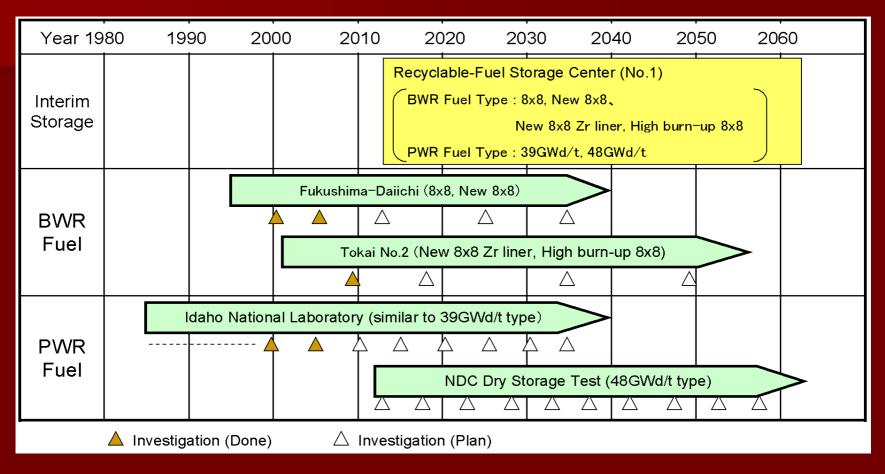
Continual investigations at Japanese NPPs and INL

Site	Fukushima-Daiichi	Tokai No.2	INL	
Fuel type	BWR New 8 x 8	BWR High Burn- up 8 x 8	PWR 15 x 15	
Burn-up	32 GWd/t	44 GWd/t	35.7 GWd/t	
Rod Temperature	Approx. 140 °C	Approx. 200° C	344 ° C	
Investigation interval	5-15 vears		5 years	
Investigation method	<u>Cov</u>	<u>er gas sampling</u>	*	

* If Kr-85 is detected on the cover gas sampling, a cause of the fuel failure will be investigated in detail.

PWR spent fuel dry storage test at NDC (Test container)

* Outer thermal insulator installed at loading only 48GWd/t F/A is removed when 55GWd/t fuel assembly is added.


PWR spent fuel dry storage test at NDC (Fuel assemblies)

Fuel type	17×17_48GWd/t type	17×17 55GWd/t type		
Beginning of storage	2012	2022		
Burn-up	42.8 GWd/t	55 GWd/t or less		
Cooling period	19 years	10 years or more		
Rod temperature	Approx. 230 °C	Approx. 230 °C		
Cladding material of fuel rods	Zircaloy–4	MDA or ZIRLO		

PWR spent fuel dry storage test at NDC (Time schedule)

Fiscal year	2009	2010	2011	2012	2013	2023	2033	2043	
					-2022	-2032	-2042	-2052	
Planning & Designing			ng gning afety ana Licen						
Manufacture & Preparation		(48G	·	Manufac Therma (55GW	U	Prepara		uel inspe ainer	ection
Storage test & Inspection	2			pe fuel te	est ▲ ▲				

A Road map for the investigation

The road map will be checked in the licensing examination of packaging design approval as transport casks and each renewal examination of it (5-year intervals).

Conclusions (1)

- Spent fuel integrity in dry storage has been investigated at Fukushima-Daiichi, Tokai No.2 and INL.
- There was no problem on the spent fuel integrity for 10-20 years
- Cover gas sampling will be continued for decades at Japanese nuclear power plants and research facilities in order to confirm that unexpected events will not appear.

Conclusions (2)

- High burn-up fuel will be investigated at Tokai No.2 (BWR) and NDC (PWR).
- If Kr-85 is detected on the cover gas sampling, a cause of the fuel failure will be investigated in detail.
- The road map for the investigation will be checked in the licensing examination of packaging design approval and each renewal examination of it (5-year intervals).

Thank you very much.

Basic spent fuel integrity

- Metallic dry casks are just stored calmly.
- Spent fuel assemblies in the cask are kept in dry and inert-atmosphere.
- Thermal creep tests, hydride reorientation tests and irradiation hardening recovery tests were carried out.
- Spent fuel integrity will keep basically after the interim storage.

Cask handling process in the nuclear power plant

- Spent fuel assemblies are loaded to the cask in the spent fuel pool.
- The cask is moved to the decontamination pit and cavity water is drained.
- After vacuum drying, helium is filled in the cask cavity.
- Leak tightness of each lid is checked and space between the lids is filled with helium.
- Tertiary lid and shock absorbers are attached on the cask for the transportation to RFSC.