Transport Criticality Assessment Methodologies for the RWMD SF Disposal Canister Transport Container

Sam Darby & Michelle Nuttall International Nuclear Services and Sellafield Ltd

Anthony Cory International Nuclear Services

Bill Sievwright Nuclear Decommissioning Authority

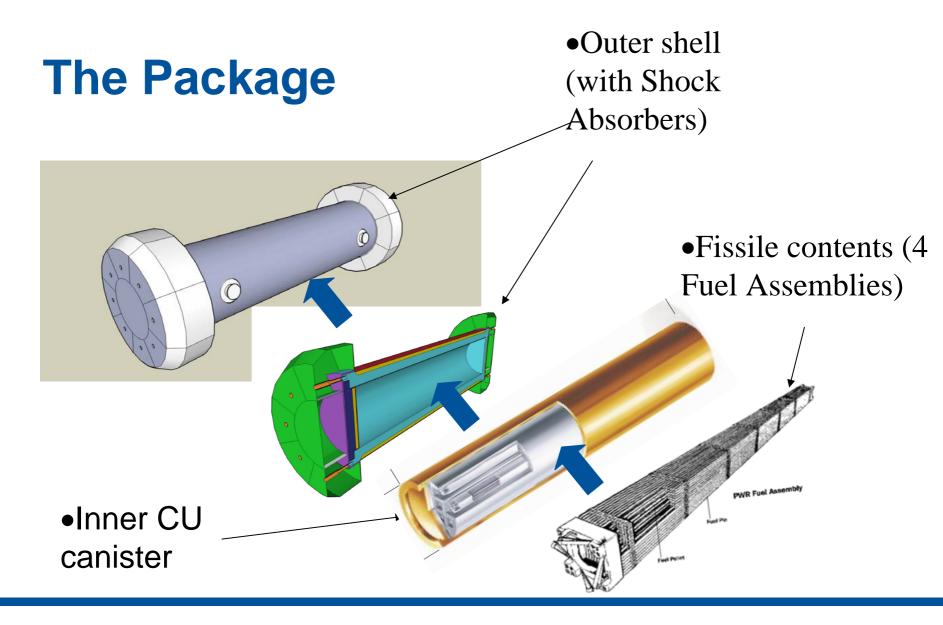
PATRAM

Oct 2010

Introduction

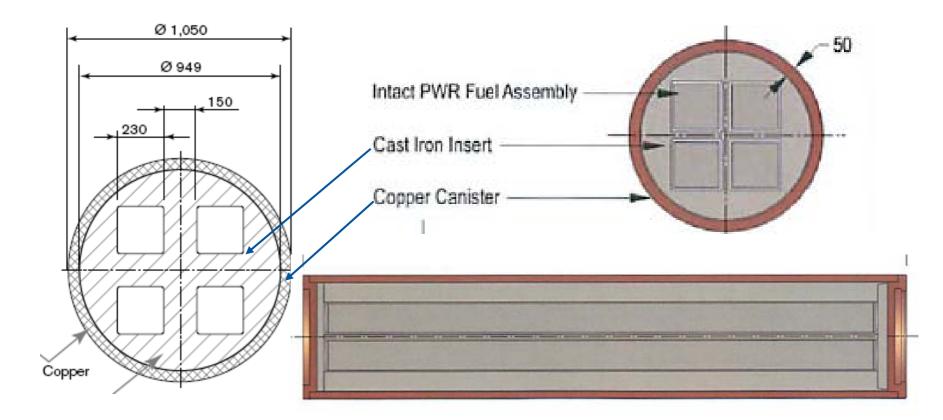
- Over the years, UK has operated many reactor systems inc. Magnox, AGR, PWR, MTR, Research reactors and breeders.
- The UK's Nuclear Decommissioning Authority is considering various options to deal with the spent fuel (SF).
- One option for some SF is direct disposal into a generic disposal facility using a transport package to carry a copper canister based on the Swedish KBS-3 design by SKB.

PATRAM Oct 2010


Introduction cont'd

- In this option, the outer container is referred to as the Design Concept Transport Container (DCTC).
- This paper describes the preliminary results of investigations into how the criticality justification should be made.
- Also illustrates the benefits of using automated criticality calculations to perform large-scale surveys.

PATRAM Oct 2010



PATRAM Oct 2010

PWR spent fuel canister – reference design

PATRAM Oct 2010

Possible SF Payloads

- Up to 4 x Sizewell, AP 1000, or EPR Fuel Assemblies UO2 up to 5w/o U235 in U, up 65 GWd/tU
- Up to 20 AGR fuel bundles UO2, up to about 3.8 w/o U235, up to 18 GWd/tU
- HLW (not considered here)
- Mainly for current and future fuels not for "historic" fuels (eg breeder, MTR outside scope)

PATRAM Oct 2010

Initial considerations - requirements for packages containing fissile material (para 671-681)

Requirement	Remarks	
Individual package in isolationNormal conditionsAccident conditions	Unless multiple water barriers are present MUST consider flooding. This means that fuel accident states are important to criticality safety.	
Arrays of packages. Normal conditions Accident conditions 	No need to consider flooding if package survives ACT.	
For massive transport flasks, calculations can usually concentrate		

on a single damaged package.

PATRAM Oct 2010

Basic criticality results

- FWR single or infinite array of packages
- Sizewell 17x17 PWR fuel 4.2% U235 in U.
- 4 x fuel assembly in DCTC

Model	Κ+3 σ	Remarks
Internally dry	< 0.5	Typical neutron multiplication factor for package with multiple water barriers
Internally flooded	1.05 -1.09	Exact value depends on assumptions. No fuel damage modelled.

PATRAM Oct 2010

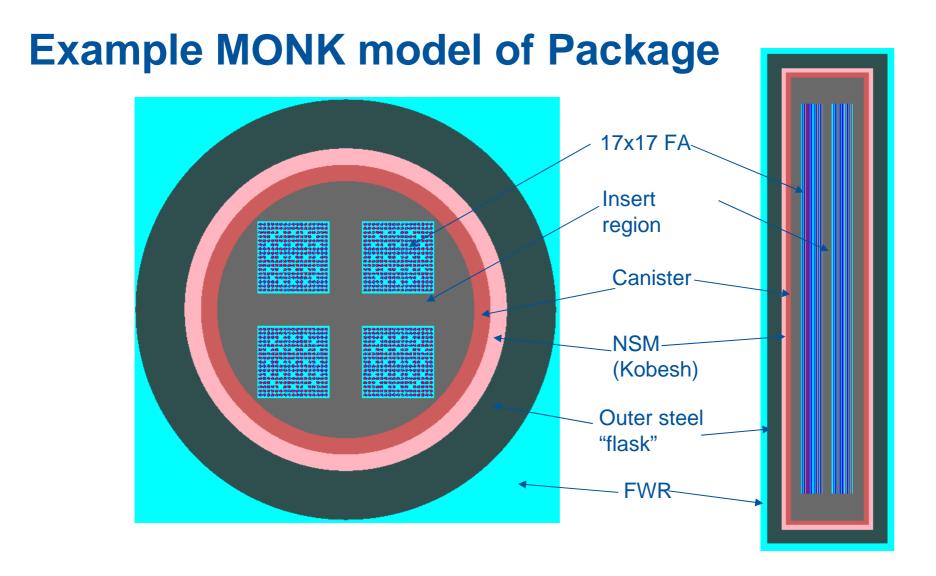
Design variants for further analysis

- Results show that the simple conceptual design unlikely to work for all UK fuels - Need to alter design concept. But how?
- Various ideas are being investigated:
 - Reducing payload
 - Using different materials (than iron) for the insert eg boronated iron.
 - Adding flux traps (water + slabs of boron, boronated stainless steels) to the DCTC.
 - Using burn-up credit for the criticality assessment
 - Adding sand (diluent) to the void space (to reduce the density of the water in the model)
 - Adding a multiple water barrier to the package.

PATRAM Oct 2010

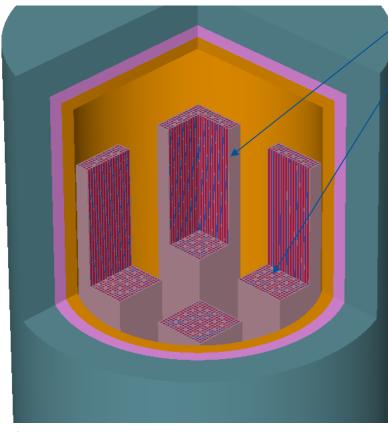
Parameter variations

- Some of the parameter variations that were investigated:
 - Enrichments = 3.0, 3.5, 4.0, 4.5, 5 and 6% U235 in U (as UO2 pellets).
 - Various insert materials besides cast iron, including: copper, void, water and boronated stainless steel and at various densities.
 - A range of separations between fuel assemblies (1, 5, 10, 15 & 20cm).
 - Flooding of the void space by a range of water densities (0 to 1 gcm⁻³) to represent void, water mists and full flooding.
 - Differential flooding
 - Lodgement walls (the structures containing the fuel assemblies) were generally modelled as boronated stainless steel at various thicknesses and with various levels of Boron - other materials were also considered.
- Just these alone give 4000 combinations



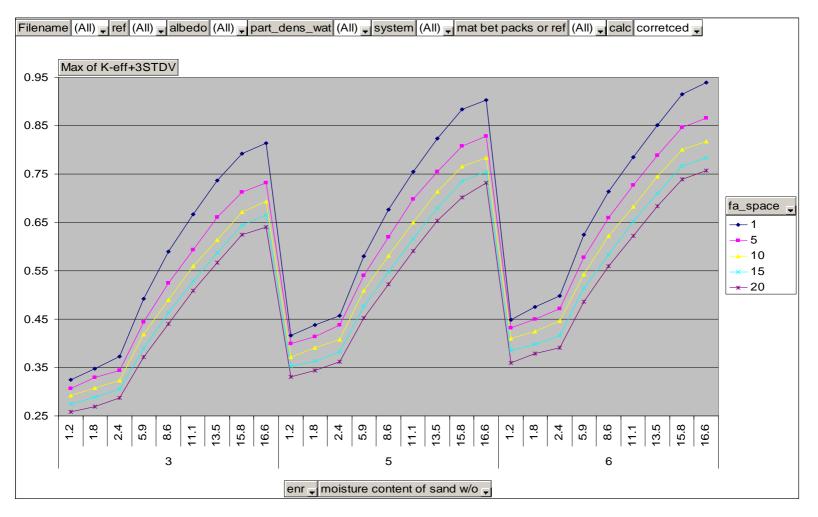
Criticality calculations

- Monte Carlo simulation using MONK with JEF 2.2 data.
- Automated procedures for surveying parameter variations
- Criticality calculations carried out using Beowulf cluster of ~ 100 CPU cores.
- Allows many design variants to be thoroughly investigated in reasonable time.





Example model - Material (sand) in the Void Space


(Insert region modelled but excluded from view)

Example results - Material (sand) in the Void Space

Conclusions

- Results show that none of the options are completely free from one sort of difficulty or other.
- Only some of the options appear to be capable of accommodating all of the fuels of current interest:
 - Multiple water barriers:
 - Adding conventional flux traps
 - Additional materials with fuel assemblies (eg sand)
- However, any of these would require major changes to copper canister and/or DCTC concept.

Conclusions cont'd

- Results show that there are a number of hybrid approaches – that is two options simultaneously – with the potential to allow the transport of the full range of fuels of current interest, eg:
 - sand + boron in the insert
- Further studies needed to identify a preferred design and optimise it.

Conclusions cont'd

- Clustered PCs and automated criticality codes can provide a valuable aid for assisting in the design of transport packages – ideas can be tested thoroughly and quickly.
- This study involved many thousand of separate Monte Carlo calculations.
- Enables many design variants to be investigated in a reasonable time.

