Imparting Realism to the Criticality Evaluation of a BWR Fuel Assembly Package

Peter Vescovi and Tanya Sloma October 4, 2010 London, UK

Summary view of nuclear criticality safety

Identification of Potential Criticality

BWR Fuel Assembly Package

1. Realistic Criticality Parameters

- a. Neutron absorption
- b. Geometry *confinement boundary*
- c. Moderation

1.a. Neutron absorption

- burnable neutron absorbers (gadolinia-urania oxide fuel rods)
- packaging materials (stainless steel)

ntrol rod												
		3.40	4.00	ŧШ	3. 40		3.40	ŧШ	4.40	3.40		J
	3,40	4 .00	4.60 8.00	4.95	4.95		4.95	4.60 8 Mil	495	4回200	3.40	I
	ŧШ	4.60 8.00	495	4.60 8.00	4.95		195	1 35	4.60 5.00	495	स्ड	ł
	ŧШ	i 95	4.60 8.00	135	4.95		135	19 5	495	4.60 8 00	स्ड	0
	3,40	495	495	4.95	-			495	495	495	4.40	F
	3,40	495	495	4.95				495	495	495	4.60	E
	400	4.60 8.00	495	4.95	4.95		4.95	4.60 200	495	4.60 8 00	495	[
	4.AD	ĩŝ	4.60 5.00	195	1.95		¢ 95	ĩŝ	4.60 5.00	ĩŝ	स्ड	¢
	3,40	4.60 200	495	4.60 8 m	4.95		4.95	4.60 8 m	495	4.60 8 00	4.60	E
		3.40	495	ĩŝ	4. 4D		4.60	ĩŝ	495	τ.su		¢
	10	9	8	- 7	6		5	4	3	2	1	
	200	W/O	0-23	5	4.60	euc) U-Z	35	495	W Ø	0-235	
	3,40	w.6	0-23	5	4.80 2.00	9000 9000) U-2) Gd;	35 Oj				
	ŧΠ	w <i>i</i> o	0-23	5	1.61 5.00	eut eut) U-Z) Gd:	35 .01				
	4.40	W/O	0-23	5	4.61 8.00	eux eux) U-2) Gd-	35 0.				

1.b. Geometry – Confinement boundary

1.c. Moderation

- Internal moderation (paper honeycomb, balsa wood, polyethylene)
- External moderation consistent with transport conditions and laws of nature

Define realistic ranges for criticality parameters that include intermediate material compositions.

2. Nuclear analysis

- a. Constrained representation of **geometry and materials**
- b. Adequate optimization of reactivity
- c. Upper safety limit with adequate margin of subcriticality
- d. Reasonable allowance for uncertainties

2.a. Geometry and materials

"Art of nuclear criticality safety"

mod·el \mä-dəl a system of postulates, data, and inferences presented as a mathematical description of an entity or state of affairs ; *also* : a computer simulation based on such a system

2.b. Optimization of reactivity

- Burnable absorber rod
 distribution
- Packaging material behavior during a fire
 - Polyethylene redistribution
 - Balsa wood charring
- Fuel bundle lattice expansion

Burnable absorber rod distribution

Fuel bundle lattice expansion

Redistribution of polyethylene during a fire

© 2010 Westinghouse Electric Company LLC. All Rights Reserved.

Charring of Balsa wood under thermal test conditions

Credible nuclear analysis must consider that intermediate material compositions can result in a maximum reactivity.

3) Margin of subcriticality- USL

Provide technical justification for an administrative margin, instead of defaulting to the use of an arbitrary value for Δk_{m} .

4) Allowance for Uncertainties - *Akp*

Array Size (2N)

Analyze and understand the allowance for uncertainties in geometry and materials (Δk_u).

Conclusions

- Define realistic ranges for criticality parameters that include intermediate material compositions.
- Consider credible intermediate material conditions (distribution and composition) that can result in a maximum reactivity.
- Provide technical justification for an administrative margin, instead of defaulting to the use of an arbitrary value for adminsitrative margin (Δk_m) .
- Analyze and understand the allowance for uncertainties in geometry and materials.

Safe transport of radioactive materials is best served when based upon realistic criticality parameters and credible nuclear analysis.

