

ACCEPTABILITY OF DYNAMIC FINITE ELEMENT ANALYSES – MATERIAL FAILURE APPROACH

Anindya Sen

Her Majesty's Inspector

Department for Transport (Central)

London, UK

- Preamble
 - Analysis / assessment is robust and self-standing
 - Sufficient margin against failure available
 - Persons involved are well experienced in the area
 - Good trail of QA documentation available

- Introduction
 - To elicit a "strain" based assessment criterion
 - Simple representative UN Type B package
 - "Accident" condition of transport Para' 727 (a) of TS-R-1 2009
 - 9 m "drop" on an unyielding "target" "so as to suffer maximum damage"
 - No follow-on fire test envisaged

- System Description
 - Thin walled hollow end-capped cylinder of typical Carbon Steel
 - 300 mm OD / 1200 mm Length / 10 mm wall thickness
 - Mass and Content (unspecified)
 - Calculated mass of ~95 kg
 - Simulated content of 13,754 N (in force, see later slide)
 - Drop orientation
 - Package longitudinal axis at 45° to horizontal for ease of modelling

- Finite Element Model
 - Linear "Shell 163" element has been used for the "cylinder" as well as the "rigid" target (1400 elements and 1402 nodes)
 - 3 integration points through thickness (default)
 - General contact definition ("node to surface")
 - Static and Dynamic Friction
 - ~13 ms⁻¹ terminal velocity before impact
 - 0.175 second overall duration of simulation
 - No welds have been modelled
 - Default tolerance values
 - Package content simulated as 1kgf (9.81 N) vertical force at each node

Department for **Transport**

- Material Data (Physical & Tensile Properties)
 - Typical Carbon Steel from BS1501:Part 1 1980
 - Elastic Plastic with Bilinear Hardening (*Mat_Plastic_Kinematic)

- Multi-axial stress state "Strain based" criterion an example
 - R3 Impact Assessment Procedure "strain (and energy) acceptibility"
 - Predominant "plastic" response "strain-based"
 - Multiaxial Stress State: rupture strain $\varepsilon_r \neq \varepsilon_u$ (uniaxial ductlity or "elongation")
 - $\varepsilon_r = f(m)$
 - Multiaxiality factor $m = \sigma_h / \sigma_{VM}$
 - $\sigma_h = trace(\sigma_{kk}) / 3$, where σ_{kk} is the principal stress tensor
 - $\sigma_{VM} = \sqrt{(3/2\sigma_{ij} \sigma_{ij})}$, where σ_{ij} is the deviatoric stress tensor

• Energy Histories

Department for **Transport**

• EPS history for E451 & E452

• Stress histories for E451 (ip#3)

• R3 Assessment for E451 (ip#3)

Conclusions

- E451 failed due to very high accumulated plastic strain >> lower bound ε_u
- This procedure needs to be followed for each element with plastic strain (\mathcal{E}_{eqv}^{ol})
- Pessimism
 - Lower bound material properties
 - Bilinear hardening curve (e.g. strain rate ~400 s⁻¹ "high" significant work hardening ignored)
 - No shock absorbing material used
- Future work planned
 - Appropriate factor of safety (FOS) against allowable multiaxial failure strain
 - Compare with ASME VIII Division 2 Section 5.3 ("Protection Against Local Failure")

• Questions if any please