

Review of Material Requirements of the IAEA Transport Regulations for LSA-III and LSA-III

Wenzel Brücher, Uwe Büttner

Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, Cologne, Germany

Florentin Lange

Consultant, Meerbusch, Germany

07 October 2010 PATRAM 2010, London

Classification of LSA Material (Simplified)

LSA-I

- uranium/thorium: ores, natural, depleted
- material with unlimited A₂ value
- material with homogeneous activity concentration ≤ 30 x exempt limit

LSA-II

- water with tritium (< 0.8 TBq/l)
- solids or gases with average activity concentration ≤ 10-4 A₂/g
- liquids with activity concentration ≤ 10⁻⁵ A₂/g

LSA-III

solids (excluding powders) with average activity concentration ≤ 2 x 10⁻³ A₂/g

Differences between LSA-III Material and Solid LSA-II Material

Increased activity content of LSA-III material

20-fold average specific activity

Compensating requirements for LSA-III material

- solid material excluding powders
- low solubility (→ leaching test)
- activity homogeneity
 - LSA-II: activity <u>distributed throughout</u> the material
 - LSA-III: activity <u>distributed throughout</u> a solid or collection of solids or activity <u>essentially uniformly distributed</u> in a solid binding agent
- IP-3 package if not under exclusive use

Purpose and Approach of the Review

Questions to be answered

- Is the required leaching test justified with respect to its contribution to transport safety?
- Are the other current material requirements sufficient to justify the 20-fold specific activity limit of LSA-III material (2 x 10⁻³ A₂/g)?
- Are other additional requirements needed to guarantee a sufficient safety level for the transport of LSA-III material?

Approach

- 1. Review of accident scenarios for LSA given in TS-G-1.1
- 2.Dose calculations for transport and handling accidents applying actual knowledge on airborne release behaviour and atmospheric dispersion

Background: Solid LSA-II Specific Activity Limit and the Q System

Reasoning for solid LSA-II specific activity limit

- "[...] it is most unlikely that a person would remain in a dusty atmosphere long enough to inhale more than 10 mg of material." (TS-G-1.1)
- Q system: activity intake is limited to 10-6 A₂
- \Rightarrow specific activity of solid LSA-II up to 10-4 A₂/g is safe.

Q system approach for exposure from inhalation (TS-G-1.1)

- storeroom of 300 m³
- 4 room air changes per hour
- adult breathing rate of 3.3 × 10⁻⁴ m³/s
- 30 min of exposure
- \Rightarrow uptake factor of approximately 10⁻³

The Leaching Test for LSA-III Materials

Scenario given in the Advisory Material TS-G-1.1 (601.2)

- rain entering the package
- material in packaging is surrounded by water for one week
- handling accident → estimated liquid release fraction 10⁻² to 10⁻³
- uptake factor 10⁻⁴ to 10⁻³ (see Q system: 300 m³ storeroom)
- \Rightarrow Activity content in water must not exceed **0.1** A_2 to limit activity intake to 10⁻⁶ A_2 .

Criticism

- limited plausibility of scenario
 - typical IP-2 and IP-3 packages are rain resistant
 - improbable sequence of events (penetrating rain, 1 week leaching, accident)
- Artificial link to Q system leads to inconsistency with LSA concept (limited <u>specific</u> activity).
- Airborne release from mechanical impact is more relevant than leaching.

Definition of a Transport Accident Scenario

Accident Scenario

- road or rail accident
- impact as 9 m Type B drop test
- package 200 l, 1 m³, 10 m³
- LSA-II or LSA-III material
- maximum specific activity

Experimental release data

- drop height up to 27 m
- powders / cement
- with / without cladding
- variation of package dimensions
- measurement of airborne dust concentration
- → release fractions [Lange et al., PTSSRM, 2007]

Definition of Handling Accident Scenarios

	Small Storeroom	Large Storeroom
Dimension	10 m x 6 m x 5 m	20 m x 15 m x 10 m
Volume	300 m³	3000 m³
Drop Height	3 m	6 m
Packages	200 l 1 m³	200 l 1 m³ 10 m³

Assumptions

- Package content
 - LSA-II: highly dispersible powder
 - LSA-III: cement
- duration of exposure 5 min (inhalation)

Results of Accident Scenarios

- Activity intake is far below 10⁻⁶ A₂ (50 mSv) for all scenarios.
- LSA-III results are clearly below LSA-II results.
- The potential effect of limited homogeneity of LSA-III is of no concern.
- ⇒ Limitation of LSA-III to non-powder solids justifies 20-fold specific activity.

River Immersion Scenario for LSA-III Material

Immersion Scenario

- loss of package on inland waterway
- river with 100 m³/s
- immersion for 7 days
- assumed activity loss 10 A₂ (10% of conveyance limit)
- 2 I/d drinking water consumption downstream

Results

- Potential activity intake 500 m downstream is more than 2 orders of magnitude below 10⁻⁶ A₂ (⇒ < 1 mSv)
- ⇒ Even with conservative assumptions the leaching scenario is no relevant hazard.

Handling Accident with Water in LSA-III Package

Storeroom Scenario (300 m³)

- specific activity 10⁻⁴ A₂/g
 - 10-fold LSA-II liquid activity limit
 - factor 20-1000 above leaching test limit
- handling accident → water spill
- 50% relative humidity from water spill
- 30 min exposure (late detection)

Results

- Potential intake more than 1 order of magnitude below 10-6 A₂
- ⇒ Even with conservative assumptions the leaching scenario is no relevant hazard.

Conclusions

- The limitation of LSA-III material to non-powder solids is sufficient to guarantee a potential exposure from accident release below 50 mSv.
- This statement remains valid even under consideration of a potential non homogeneous activity within the limits of the Advisory Material TS-G-1.1.
- The contribution of the low solubility requirement for LSA-III to transport safety is of minor importance.
- Therefore, the leaching test for LSA-III material could be omitted without a relevant influence on transport safety.

Thank you!