

Comparison of Monte Carlo codes MCNP and MONACO

for applying to shielding calculation of transport/storage casks

Hiroaki TANIUCHI Transnuclear Tokyo PATRAM 2010

TRANSNUCLEAR TOKYO

Contents

- Background
- Purpose of study
- Comparison of feature (MCNP & MONACO)
- Comparison of calculated results
- Conclusion

- To design transport/storage casks for spent fuels with maximum capacity, shielding calculation is the most important.
- Monte Carlo codes may be the most powerful tool.

Problem

- So far, there are still difficulties to obtain reasonable and reliable results without many trials.
- What is good option to have reliable results without many trials?

TRANSNUCLEAR TOKYO

PURPOSE

- Comparison of MCNP and MONACO
- Viewpoint of user of shielding calculation of casks based on the author's experiences
- MCNP : Los Alamos National Laboratory (LANL) :long history, many experience : most popular Monte Carlo code, now
- MONACO with MAVRIC : Oak Ridge National Lab. (ORNL) :new comer, but origin is MORSE :belong to SCALE 6

TRANSNUCLEAR TOKYO

Comparison of feature INPUT DATA

Item		MCNP	MONACO	
Library		Continuous	Multi-group (200n+47g,27n+19g)	
Goomotry	Definition	Easy/ complicated	Easy	
Geometry	Expression	Any	Limited	
Source	No. of source region	Any	Limited	
	Source distribution	Any	Uniform only (plan to prepare)	
	Definition	Flexible, but complicated	Limited, but easy	
	Coordinate	Any	Cartesian only	
Tally	Dose Conversion factor	Not prepared	Prepared	
	Definition	Flexible, but complicated	Limited, but easy	

TRANSNUCLEAR TOKYO

Comparison of feature Technique

ltem	MCNP	MONACO	
Variance Reduction	WWG (Weight window generator)	CADIS (Consistent Adjoint Driven Importance Sampling)	
	for only one detector	for multi-detectors	
Estimation of Error	Ten statistical checks	Plan to prepare statistical checks	
Visualization of outputs	Particle display Tally plots (Graph)	Mesh tally viewer Importance map	

TRANSNUCLEAR TOKYO

Comparison of feature Geometry

Item	MCNP	MONACO
	Easy/ complicated	Easy
	1)Surfaces Defined by Equations, 2)Macrobodies	SCALE Generalized Geometry Package (SGGP)
Geometry	(BOX,RPP,SPH,RCC,	(CONE, CUBOID, CYLINDER, DODECAHEDRON,
	HEX,REC,TRC,ELL,	ECYLINDER, ELLIPSOID, HEXPRISM, HOPPER,
	WED,ARB)	PARALLELEPIPED, PENTAGON, PLANE,
	3)Axisymmetric Surfaces Defined by Points,	QUADRATIC, RHEXPRISM, RHOMBOID, SPHERE, WEDGE, XCYLINDER, XPPLANE,
	4)General Plane Defined by Three Points	YCYLINDER, YPPLANE, ZCYLINDER, ZPPLANE)
option	Cell, LIKE n BUT, Universe, fill, Lat, TRCL	Unit, hole, rotate, array

TRANSNUCLEAR TOKYO

Comparison of feature Source

Item		MCNP	MONACO	
	No. of source region	Any(SDEF, SI, SP,SD)	One(or same material	
Source	Source distribution (Region)		Uniform only (plan to prepare)	
	Definition	Flexible, but complicated Point, Surface, Volume	Limited, but easy Volume	

TRANSNUCLEAR TOKYO

Comparison of feature Tally

Item		MCNP	MONACO	
	Coordinate	Cartesian or cylindrical	Cartesian only	
Tally	Dose Conversi on factor	Not prepared	Prepared (ANSI standard (1991) flux-to-dose-rate factors,)	
	Definition Flexible, but complicated Point, Ring, Surface, Volume, Mesh		<mark>Limited, but easy</mark> Point, Volume, <mark>Mesh</mark>	

TRANSNUCLEAR TOKYO

Comparison of feature Variance Reduction

ARE\

Item	MCNP	MONACO
	WWG	CADIS
	(Weight window generator)	(Consistent Adjoint Driven Importance Sampling)
	mesh-based weight window	
Variance Reduction		
	for only one detector	Target weights Source weights
TRANSNUCLEAR TOKYO	ior only one detector	for multi-detectors

Comparison of feature Variance Reduction

Comparison of feature Visualization of outputs

ltem	MONACO
Visualization of outputs	Input geometry

Comparison of feature Visualization of outputs

ARE\

Comparison of feature Visualization of outputs

TRANSNUCLEAR TOKYO

Comparison of calculation

Model-1 : simple cask geometry

(neutron shielding region including copper fins is homogenized)

Model-2 : detailed cask geometry

(explicitly defined copper fins in neutron shielding region)

- Condition
 - Source:

Neutron source : Pu-239, by Watt spectra equation Intensity :1.0E9. FP gamma : 18years cooled BWR spent fuel Intensity 1.0E16. Source region is assumed as ring shape in a cavity of the cask to reduce the calculation time

Detector: Point detector (1m from the cask surface at axial center) Large surface ring detector (cylindrical surface detector with 2m axial height at 1m from the cask surface at axial center) for MONACO: surface detector-like volume detector is created TRANSNUCLEAR TOKYO

Model-1 (simplified model)

Photo caption - © Copyright TRANSNUCLEAR TOKYO

Effect of setting cell importance in MCNP calculation with simplified model

Source	Variation of cell	CPU	history	Point detector		Su	Surface Ring		
type	importance for	time					detector		
	first run	(min.)		Dose	error ^{*)}	Dose	error		
				rate		rate			
neutron	Imp=1(all cell)	477	5000000	0.63	0.033(10/10)	0.62	0.022(10/10)		
	Imp=1 to 5000	100	105428	0.58	0.038(10/10)	0.63	0.017(10/10)		
	Imp=1 to 128	100	2774368	0.63	0.030(10/10)	0.63	0.017(10/10)		
gamma	Imp=1 to 5000	500	368253756	6.65	0.051(8/10)	6.76	0.023(9/10)		
	(longer time)	-	4579748533	7.16	0.018(10/10)	6.93	0.008(10/10)		

*) The number in the brackets shows the passed results of 10 statistical checks.

Effect of setting cross section/SN in MONACO calculation with simplified model

Source type	Library and number of mesh		CPU time ^{*)} history (min.)		Point detector		Surface Ring detector	
					Dose rate	Uncertainty	Dose rate	Uncertainty
neutron		27n+19g	49(+11)	6000x100	0.97	0.015	0.97	0.006
	Reference case	P1S4 (200n+47g)	42(+72)		0.59	0.020	0.59	0.009
		P3S8 (200n+47g)	44 <mark>(+145)</mark>		0.58	0.021	0.59	0.009
gamma		27n+19g	169(+5)	250000x100	6.78	0.011	6.70	0.004
	Reference case	P1S4 (200n+47g)	229(+21)		6.73	0.011	6.67	0.004
TRANSV		P3S8 (200n+47g)	205(+28)		6.53	0.011	6.69	0.005
TRANSN	UCLEAR TOK	YO						\mathbf{A}

AREVA

Effect of mesh size for Denovo (Number of mesh:100000)

Comparison of Monte Carlo codes MCNP and MONACO - 09 January 2011 - p.19

Effect of mesh size for Denovo (Uniform mesh:73000)

Comparison of Monte Carlo codes MCNP and MONACO - 09 January 2011 - p.20

Effect of mesh size for Denovo (Large number of mesh :179000)

Comparison of Monte Carlo codes MCNP and MONACO - 09 January 2011 - p.21

Effect of setting mesh in MONACO calculation with simplified model

Source	Library and	CPU	history	Point detector		Sur	face Ring
type	number of mesh	time ^{*)}				detector	
		(min.)		Dose	Uncertainty	Dose	Uncertainty
				rate		rate	
neutron	200n+47g	42(+72)	6000x100	0.59	0.020	0.59	0.009
	Uniform mesh 46(+53)			0.63	0.020	0.60	0.010
	Large number of mesh	39(+110)		0.61	0.019	0.60	0.008
gamma	200n+ <mark>47</mark> g	229(+21)	250000x100	6.73	0.011	6.67	0.004
	Uniform mesh	235(+19)		6.70	0.011	6.65	0.004
	Large number of mesh	233(+31)		6.76	0.010	6.73	0.004

Comparison of calculation

Comparison of MCNP and MONACO with simplified model

Source	item	MC	NP	MONACO		
type		Dose rate	Error	Dose rate	Uncertainty	
Neutron	Point detector	0.63	0.030	0.59	0.020	
	Surface Ring detector	0.63	0.017	0.59	0.011	
	CPU time	100 1		42(+72)		
	No. of Calculation			1		
Gamma	Point detector	6.65	0.051	6.73	0.011	
	Surface Ring detector	6.76 0.023		6.67	0.004	
	CPU time	500(1100)		229(+21)		
	No. of Calculation	2+	1	1		

TRANSNUCLEAR TOKYO

AREVA

Model-2 (fin detailed model)

Photo caption - © Copyright TRANSNUCLEAR TOKYO

Model-2 (fin detailed model)

Photo caption - © Copyright TRANSNUCLEAR TOKYO

Comparison of calculation

Comparison of MCNP and MONACO with detailed model

Source	item	M	CNP	MONACO		
type		Dose rate	error	Dose rate	uncertainty	
neutron	Point detector	0.66	0.014(8/10)	0.64	0.044	
	Surface Ring detector	0.66	0.008(8/10)	0.62	0.019	
	CPU time	100(100(+100)		600(+67)	
	history	19133462		6000x26		
	No. of Calculation		2	1		
gamma	Point detector	6.95	0.042(9/10)	6.52	0.032	
	Surface Ring detector	7.01	0.015(10/10)	6.82	0.012	
	CPU time	1500(+600) 641118619		2030(+15)		
	history			100000x31		
	No. of Calculation	2	+1	1		

TRANSNUCLEAR TOKYO

AREVA

MCNP and MONACO are compared

- Both codes are good enough to calculate dose rate around casks. (except neutron calculation by MONACO with 27n+19g library)
- Neutron : reliability and the total calculation time are reasonable enough to apply for shielding calculations of casks.
- Gamma : considerable longer calculation time are necessary to obtain the reliable gamma dose rate.
 - : variance reduction method CADIS in MAVRIC seems more powerful than Weight Window Generator in MCNP.
- From the viewpoint of Monte Carlo code user,

the best mixture of MCNP and MONACO is preferable.

TRANSNUCLEAR TOKYO

