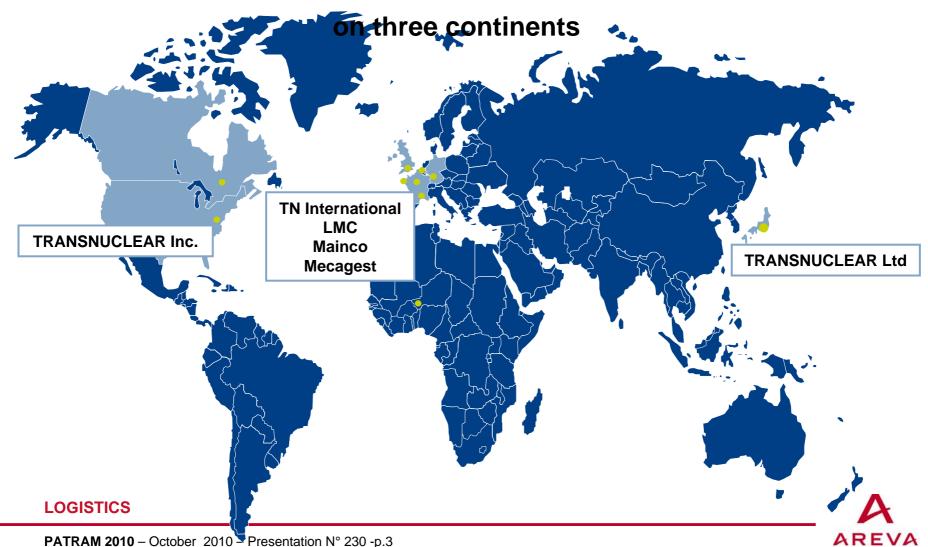


Transportation Package for Use in Facilities with Limited Crane Capacity


Catherine A. Shelton

Introduction - Logistics Business Unit

Logistics Business Unit includes six legal entities

Logistics BU Packaging Expertise

- ► AREVA Logistics Business Unit owns 3,000 radioactive and nuclear packages and operates total fleet of 5,000 packages
- More than 150 licenses
- ▶ Packages are licensed to transp the different products of the fue cycle: UF6, Pellets, UNH, Fresh and Used Fuel, Plutonium, MOX Sources, Waste, etc.

Why a New Design?

- ► Lack of cask designs which can support full length fuel rods transported before and after irradiation examination
- Lack of US NRC licensed packages for research reactors transported before and after irradiation examinations in the U.S.

Design and Licensing Constraints

- **► Multiple Contents**
- ► Multiple Facilities
- ► Multiple Countries

EPR Operations: Post-Irradiation Examination (PIE)of EPRTM reactor Fuel Pins

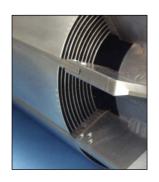
LOGISTICS

Irradiated EPRTM Reactor Fuel Pins

- Max length: ~ 4.5 m (179 inches)
- Significantly longer than general PWR/BWR pins
 - ◆ ~4.3 m (169 inches)
- Also anticipate need for PIE of MOX fuel pins

Irradiated Nuclear Fuel in North America

- Primarily research reactors
 - TRIGA
 - MTR
 - Diverse Research Reactor Fuel types


SQUARE

CURVED PLATES

FLAT PLATES

TUBULAR

LOGISTICS

Infrastructure Constraints or Unique Interface Requirements

- Limited crane capacity
- Shallow pool
- Horizontal hot cell operations
- Portal and transfer system interfaces

Transport Constraints

- ► To facilitate performance of international shipments and to minimise transport costs, need to transport the package inside a standard ISO 20' container
- Transport weight restrictions in various countries must also be considered

LOGISTICS

Multi-Country Licensing

- Multiple Cultures
- Multiple Languages
- Variations in international regulatory requirements and standards
- Transnuclear, Inc. is leading a design project team integrating expertise from across the AREVA group

TN-LC Cask – Main Characteristics

- ► Cask cavity length: > 4,500 mm (179 inches) to accommodate EPRTM reactor pins
- Cask cavity diameter: TBD
 - Tradeoff between capacity and analysis results
- ► Max. weight (including impact limiters): < 30 metric tons
- Wet and dry loading/unloading capability
- Vertical or horizontal operability

Conclusion

- ► TN-LC design must be compatible with the interface requirements and constraints of different facilities around the world and the regulatory requirements of multiple countries
- ► The TN-LC cask will provide a versatile packaging for the transport of irradiated nuclear material that will be useful to the commercial and research communities

Thank You for Your Attention

