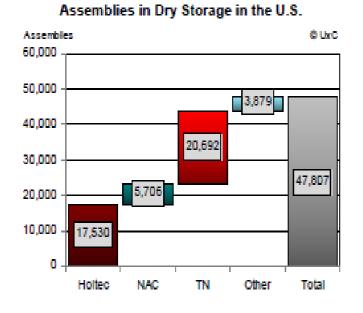


Considerations for Transportation Licensing of Used Fuel Already in Dry Storage

Dr. Jayant Bondre/Robert Grubb

Contents


- History of Dry Storage in USA
- Current Status
- Challenges Encountered in Transportation Licensing
- Lessons Learned

Some Early Dry Storage Systems were Designed for Storage Only

- In USA commercial used fuel is stored in fuel pools or in dry storage at sites
- Dry storage systems are typically vertical metal or concrete overpacks (casks) with or without canister or horizontal overpacks with canister
- Dry storage systems have been deployed at various utility sites for more than 20 years
- Some of the early systems are storage only designs
- Current designs are mostly dual purpose (designed for both storage and transportation)
- It is important to qualify these storage only systems for transportation

More than 50,000 Used Fuel Assemblies in Dry Storage in USA

Data Taken from StoreFUEL May 4, 2010

Casks © UxC 1,400 1,200 1,000 800 600 600 400 236 0 326 0

TN

Other

Holtec

NAC

Dry Storage Systems Loaded in the U.S.

PATRAM 2010 - October 2010 - Presentation N° -p.5

LOGISTICS

_____ AREVA

Total

Transnuclear Used Fuel Storage Sites in USA

NUHOMS® & TN Metal Storage Casks

LOGISTICS

PATRAM 2010 - October 2010 - Presentation N° -p.7

Assemblies in Storage will Need to be Transported in the Future

Site to Site

Site to Central Storage Facility

Site to Recycling Facility

Site to Disposal Facility

PATRAM 2010 - October 2010 - Presentation N° -p.8

Challenges Encountered in Transportation Licensing

- Transnuclear is currently licensing for transportation a cask design which was initially approved for storage only
- Challenges Encountered in Transportation Licensing:
 - Difference in Storage and Transportation Regulations
 - Cask Drop Analysis
 - Fuel Drop Analysis & Fuel Cladding Material Properties
 - Computer Codes and Analytical Methods
 - Fabrication Considerations
 - Effect of Loaded and in-Storage Casks Considerations

Differences in Storage And Transportation Regulations

- Differences in criticality analysis using burnup credit
- Testing requirements during fabrication for gaps (effect on shielding and thermal performance)
- Leak testing of containment boundary
- Currently accepted regulatory practices and expectations are different now than they were when these storage only systems were licensed

Actual Cask Drop Tests are Impracticle

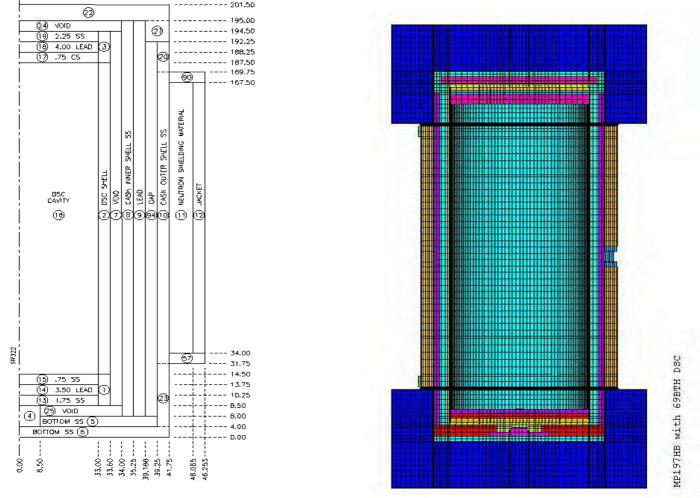
Cask Drop Analysis:

- Impractical to perform regulatory drop tests on already loaded casks
- Postulated drop accidents need to be evaluated by analysis
- Computer code models need to be extensively benchmarked against other similar drop tests to confirm code and modelling verification and validity
- Results in a very conservative cask drop model

Conservative Approaches to Fuel Drop Analysis

Fuel Drop Analysis & Cladding Material Properties:

- Almost all the fuel in early storage designs is lower burnup (<45GWD/MTU)
- Current fuel drop analysis approach envelops higher burnup fuels (>45 GWD/MTU)
 - Fuel cladding material properties
 - Gaps between fuel assemblies and container
 - Gaps between container and shock absorber
 - No structural credit for fuel pellets
 - Assumptions made based on higher burnup fuel are very conservative for lower burnup fuel


Computer Codes And Analytical Methods are Complex

- Analysis Methodologies have evolved over time to accommodate higher burnup, higher enrichment and higher decay heat fuel and capacity of casks have also increased:
 - Application of same methods for the casks which are in storage with relatively lower burnups, enrichments and decay heats is overly conservative
 - Additional benefits obtained by increasing margins is not warranted because demands on the transportation cask with lower burnup, cooler payload is not as challenging as high burnup payload

Evolution of Thermal Analysis Models

AREVA

Fabrication Considerations

- Requirements for leak testing of the cask during storage licensing and during transportation licensing are different
- Cask shielding material integrity testing requirements are different during storage licensing and during transportation licensing
- Qualification testing requirements for basket neutron absorber materials have evolved over time
- Thermal (effect of gaps during fabrication) testing if requested during regulatory review is also a challenge as these casks are already fabricated and loaded

Summary

- It is overly conservative to apply the current practices and approaches which are based on higher burnup, higher enrichment and higher decay heat load systems to early storage system designs
- More realistic models should be considered which accounts for the lower burnups and lower decay heat loads of earlier storage designs
- During preparation of safety analysis for transportation application, careful considerations should be given to the challenges outlined earlier to avoid lengthy regulatory review
- Pre-application meeting with the regulators is essential to discuss proposed analytical approach and staff expectations to avoid unnecessary Request for Additional Information (RAI)
 LOGISTICS

