

Analysis Methodology and Assessment Criteria for Bolted Trunnion Systems of Type B Packages for Radioactive Materials

Jens Sterthaus, Viktor Ballheimer, Frank Wille

Contact: Jens.Sterthaus@bam.de

BAM Federal Institute for Materials Research and Testing, Berlin, Germany

Working Group

Mechanical and Thermal Container Assessment / Special Issues

PATRAM2010 07.10.2010

- 1 Load Cases for Trunnion Systems
- 2 Specific Features and General Assessment
- 3 Modelling
- 4 Assessment
- 5 Conclusion

1 Load Cases for Trunnion Systems

2

1

Conceptual sketch of a bolted trunnion

Trunnion: solid structure with specific features \rightarrow modern methods (e.g. Finite-Element-Analyses)

Concepts different from nominal stresses → special assessment is necessary in this particular case [KTA 3905]

BAM guideline

- Load attachment points [LAP] such as trunnions
 Handling by crane (inside/outside nuclear facility)
 - -Transportation (routine conditions)
- -Lid systems
- Guideline's objectives:
 - -Assumptions for loading
 - -Methods for calculation (preferential FEA)
 - Criteria for assessment

Abstraction

Real trunnion on a CASTOR HAW 28M (with a cap in the center)

Geometry of a half-symmetric FE-model

Boundary conditions and loading

Meshed submodel of most highly stressed sector with marked driven nodes

Bolts: Solid FE-model and concept of nominal stress

- Preload for bolts taken from VDI2230
- Calculation of minimum/maximum preload considers
 - uncertainty of tightening and friction resp. lubrication conditions
 - embedding of the contact surfaces and
 - relaxation of the materials

Details of preloaded bolt and the surfaces for contact

Particular Approach for Trunnion

- Outdated: Separation of local stresses in classes and the estimation of fatigue notch factor → ambiguous assessment
- *Contemporary:* Assessment of solid structures with local stresses (e.g. FKM-guideline) instead of nominal values

Criteria for Assessment

Criterion is fulfilled

- if
$$\sigma_v \leq \frac{R_{p0,2}(T)}{4\pi}$$

is true everywhere with local stresses taken from FEA [derived from KTA 3905] > elastic

- or if $\frac{R_{p0,2}(T)}{1,5} \le \sigma_v \le R_{p0,2}(T)$ \rightarrow additional limit analyses with 2

 \rightarrow additional limit analyses with 2.25fold load. Plastic deformation of whole section has to be avoided.

elastic-plastic

Assessment of local stresses

(stresses taken directly from FEA)

Particular Approach for Bolt

- Nominal stresses \rightarrow well-defined assessment
- No framework for assessment of local stresses

Assessment

Effective stresses due to assembly (according to KTA 3905)

 $\sigma_{\rm v} \leq 0.7 R_{\rm p0,2}(T)$

- Additional tensile stresses due to operation (according to KTA 3905)

 $\sigma_{\rm z} - \sigma_{\rm z,asm} \leq 0,1 R_{\rm p0,2}(T)$

 Limitation of effective stress due to operation (total stresses including residual torsional stresses)

$$\sigma_{\rm v} \leq R_{\rm p0,2}(T)$$

Assessment of nominal stresses

Calculation of nominal forces

Normal force (*N*) and bending moment (*M*) from section's nodal forces (F_i) and distance (r_i)

Axial stresses σ_z Longitudinal section

Bolts: Solid FE-model and concept of nominal stress

Solid modelling of the bolt

- avoidance of connecting beam elements to solids
- section's forces/moments computable from nodal forces
 - \rightarrow concept of nominal stress
- assessment stays conform with national standards

5 Conclusion

Conclusion

- Load attachment point with complex shape
 - \rightarrow FEA recommended

Trunnion

Local stresses should be assessed
 →use of nominal stresses is not up to date

Bolts

- No standard or guideline available to assess local stresses
- High effort to model resp. calculate local stresses in area of contact
- Necessity to derive input data for calculation of nominal stresses from FEA due to possible slip at bolted flanges

 \rightarrow nominal stresses should be used