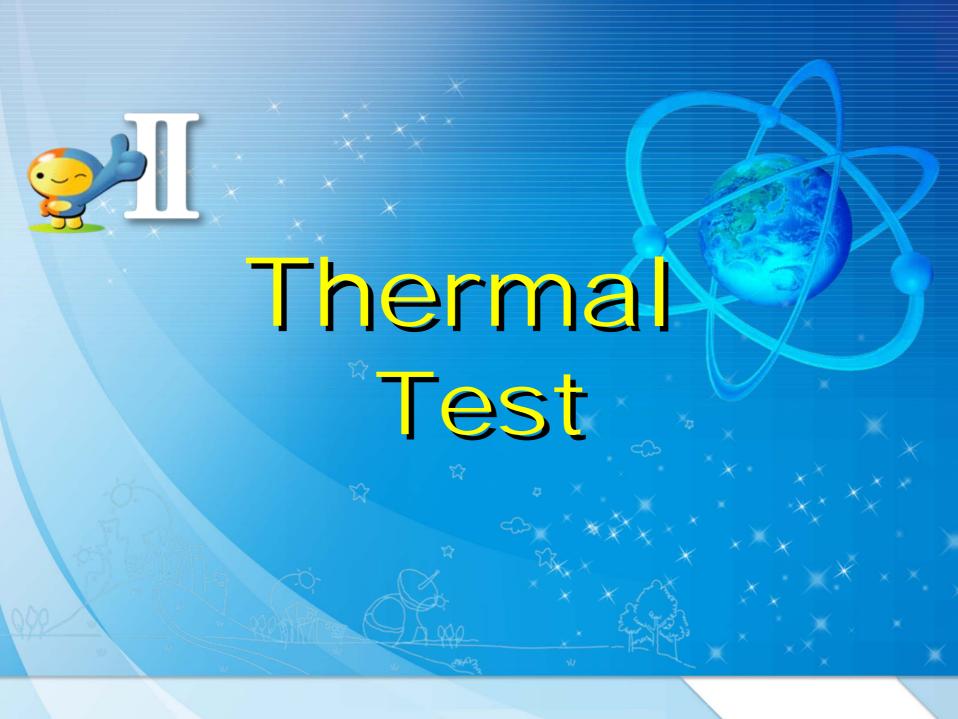

THERMAL SHIELDING OF THE WOOD SHOCK ABSORBER

2010. 10. 04

K.S. Bang, K.Y. Kim, J. C. Lee, C.S. Seo, K.S. Seo

Contents

- Introduction
- Thermal Test
- Results & Discussion
- Conclusion



Introduction

- To safely transport the radioactive waste arising from a hot test of ACP (Advanced spent fuel Conditioning Process).
 - KAERI is developing a shipping package.
 - Regulatory guidelines classify the hot cell cask as a Type B.
- Type B package should be able to withstand a test sequence as follows;
 - 9 m drop onto an unyielding surface
 - 1 m drop onto a puncture bar
 - 30 minutes under a thermal condition of 800 °C
- In particular, the containment of the package must be maintained at the conclusion of this sequence.

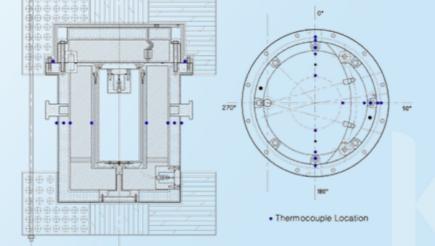
- Greiner investigated the thermal protection provided by shock absorbers to a containment seal of a legal-weight-truck package using the CAFE code.
 - No-shock absorber package : 0.7 h
 - Intact package : roughly 2 h
- This paper discusses the experimental approach used to simulate the response of a hot cell cask to a furnace fire using a 1/2 scale model.

Description of a Hot Cell Cask

ltem	Description	330
Components	Shell(Outer, Intermediate,	
	Inner)	
	Neutron Shield	
	Gamma Shield	
	Shock Absorber	
Dimension		
	Outer Diameter : 800 mm	
	Overall Height: 1,140 mm	
Weight		
	4.4 tons	
Material		
	Shell : Stainless Steel	
	Neutron Shield : Resin	
	Gamma Shield : Lead	
	Shock Absorber : Balsa Wood	▲ Configuration of a Hot Cell Cask

Before the Thermal Test

- 9 m drop test
- 1 m puncture test
- Upper shock absorber was removed
- Accelerometers were removed
- Strain gages were removed
- 16 thermocouples were installed
- Upper shock absorber was re-installed


Deformed shape of shock absorber

▲ Drop impact instance

Deformation of outer shell

▲ Puncture impact instance

Scale Model Heat Input

Specific heat input for the full scale cask

$$Q_{P} = (\pi DL + 2 \times \frac{\pi D^{2}}{4})\sigma F \frac{T_{R}^{4}}{M_{P}} \tau_{R}$$
• D : full scale package diameter • L : full scale package length

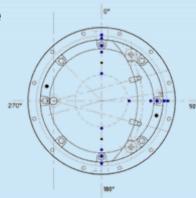
- Q_P: full scale specific heat input

- σ : Stefan-Boltzmann constant
- F: view factor
- $\cdot T_F$: fire temperature
- \cdot M_p : mass of the full scale package
- τ_{R} : regulatory fire duration

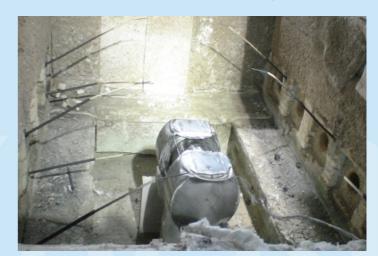
Fire duration for the scale model

$$\tau_{T} = \frac{Q_{P}M_{M}}{(\pi D_{M}L_{M} + 2 \times \frac{\pi D_{M}^{2}}{4})\sigma F T_{F}^{4}}$$

- D_M: test model diameter
- L : test model length
- F : view factor for a package in a furnace
- ullet T_F : furnace temperature
- \cdot M_{M} : mass of the test model

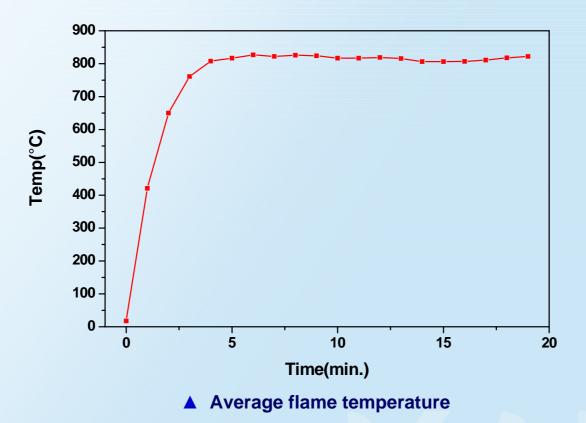

Measurement System

- Temp. DAS: up to 160 thermocouples
 - → Thermocouple scanner
 - Signal conditioner
 - A/D converter
 - → Personal computer

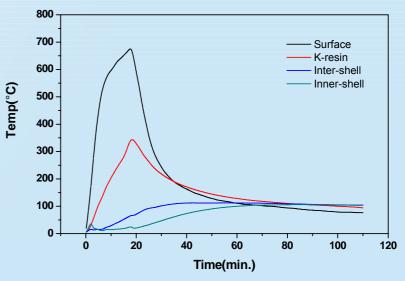


Thermal Test

- Carried out in a furnace of Fire Insurers Laboratories of Korea(FILK)
- Furnace roof was opened by using the overhead crane
- Test model was lowered into the furnace
- Thermocouples were connected to Temp. -DAS
- Furnace roof was closed
- After the required duration, furnace roof was opened
- Thermocouples were removed from Temp. -DAS
- Test model was lifted out of the furnace
- Transferred to cooling area



Thermocouple Location

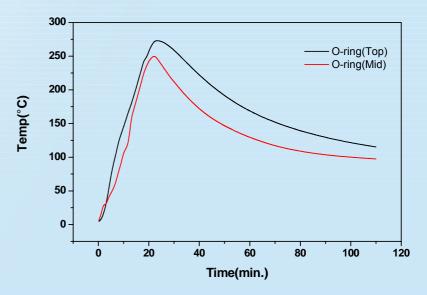

Flame Temperature

- Average flame temperature in the thermal test : 813 °C
 - → Thermal condition was Satisfied.

■ Test Results

Location		Temp.(°C)	Time(hr)
	Upper(0°)	682	0.3
Surface	Mid.(90°)	602	0.3
	Lower(180°)	-	-
	Upper(0°)	346	0.3
K-resin	Mid.(90°)	438	0.28
	Lower(180°)	426	0.33
	Upper(0°)	112	0.87
Intermediate-	Mid.(90°)	101	1.41
	Lower(180°)	105	0.97
	Upper(0°)	106	1.40
Inner-shell	Mid.(90°)	103	1.43
	Lower(180°)	102	1.45

▲ Temperature history during a thermal test


Maximum temperature

- → Surface of the hot cell cask : 682 °C
- → K-resin: 438 °C after 17 min.
- → Intermediate-shell : 112 °C after 52 min.
- **❖** Max. temp. of the lead < melting temp.

Test Results

Location		Temp.(°C)	Time(hr)
O ring	Upper(0°)	273	0.38
O-ring	Mid.(90°)	251	0.37

- Temp. of the Upper part
 - Higher than that in the lower part
 - → Combustion was initiated from the broken upper part of the shock absorber
- Temp. of the O-ring
 - → Higher than manufacture's recommended temp.
 - → Shock absorber, which was broken in the drop test, was burned
- To maintain the containment boundary
 - → Important that the manufacturing of the shock absorber prevent breakage
- ❖ To ensure thermal integrity, KAERI is currently improving the thermal problem of the hot cell cask

▲ Temperature history at O-ring

Thermocouple Location

- Thermal test was carried out to evaluate the thermal integrity of a hot cell cask.
 - The maximum temperature of the containment seal in the upper part was measured as 273 °C, which is higher than the manufacture's recommended maximum temperature.
 - → This is because the shock absorber, which was broken in the drop test, was burned.
- Therefore, in order to maintain the containment boundary of the hot cell cask, it is important that the manufacturing of the shock absorber prevents breakage.

