

M. TARDY (AREVA TN International)

S. KITSOS (AREVA TN International) and M. LEIN (AREVA DSR)

TNI's actinides only BUC

Very pessimistic assumptions

Only 8 major actinides
²³⁵U, ²³⁶U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu

Irradiation History

- Specific power 40 W/g
- 1 irradiation cycle
- No cooling time

TNI's actinides only BUC - Calculation scheme

- The new BUC methodology implemented in TNI is based on Actinides + Fission products (FP) and
 - Conservative irradiation data for depletion calculations
 - Use of bounding axial profiles evaluated from reactor record data or measurements
 - Validation of the depletion code
 - Validation of the criticality code

TNI's new BUC methodology

9 Actinides and 6 Fission Products (FP) are taken into account

S

²³⁵U, ²³⁶U, ²³⁸U, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴²Pu, ²⁴¹Am + ¹⁴⁹Sm, ¹⁰³Rh, ¹³³Cs, ¹⁵²Sm, ¹⁴³Nd, ¹⁵⁵Gd,

<u>Nota</u>: OECD recommandations 15 FP (stable and non-gazeous) : ¹⁴⁹Sm, ¹⁰³Rh, ¹³³Cs, ¹⁵²Sm, ¹⁴³Nd, ¹⁵⁵Gd, ⁹⁵Mo, ⁹⁹TC, ¹⁰¹Ru, ¹⁰⁹Ag, ¹⁴⁵Nd, ¹⁴⁷Sm, ¹⁵⁰Sm, ¹⁵¹Sm, ¹⁵³Eu

♦ 15 PF : 80% to 90% anti-reactivity of all FP

TNI's new BUC methodology - Calculation scheme

TNI's new BUC methodology – Fuel inventory

Conservative irradiation data for depletion calculations

Parameters	Comment	Reference
Specific power	pecific power $30-50 \text{ W/g} \Rightarrow \text{Low effect on reactivity}$ $\Rightarrow \text{ realistic P}_{\text{spec}}$	
Fuel temperature	550°- 650°C \Rightarrow Low effect on reactivity \Rightarrow realistic T	credit in France » ICNC2003
Moderator temperature	Conservative value: at the outlet of the core	
Natural boron concentration in the moderator	800 ppm Conservative value: constant average boron concentration	Phenomena and parameters important to burnup credit" ORNL IAEA 10-14 July 2000
Irradiation history	1 cycle: conservative value	

TNI's new BUC methodology - Fuel inventory

AREVA

Parameters	Assumptions	Comment
Location of the fuel assemblies within the core	UOX assembly surrounded by 8 MOX assemblies during the entire irradiation	Conservative
Control rods (B₄C or AIC)	Total insertion of the CRs during the entire irradiation	Conservative
Cooling time of fuel assemblies	2 years	Conservative

TNI's new BUC methodology - Bounding axial profiles

Burn Up (MWd/t)

TNI's new BUC methodology - Depletion code validation

Two kinds of experiments carried out :

- P.I.E on PWR spent fuels :
 - Chemical analyses of spent fuel samples (Actinide + FP)

Qualification of fuel inventory calculations

Minerve core

Oscillation of separated FP samples

Water poolGraphite MTR Central cavity: reflector bundle Test lattice

Validation of FP cross section

• Oscillation of irradiated samples from PWR fuel rod cuts

Determination of the total reactivity worth

of real irradiated samples

PATRAM 2010 – October 2010 – Presentation N°143 -p.12

TNI's new BUC methodology - Criticality code validation

Validation of the criticality code CRISTAL V1 by using French HTC & FP critical experiments

<u>HTC experiments (HTC rods)</u>

Objectives : Validation of major actinides cross sections

Series of 205 critical experiments

FP experiments (UOX and/or HTC rods)

✓ <u>Objectives</u> : Validation of FP cross sections

Six FP of BUC ⇒ ¹⁰³Rh, ¹³³Cs, ¹⁴³Nd, ¹⁴⁹Sm, ¹⁵²Sm, ¹⁵⁵Gd

✓ Series of 145 critical experiments

Common Interest Program IRSN/COGEMA under disclosure agreement

Application

ARE

Reactivity gain against fresh fuel assumption due to different BUC approaches

Transport cask loaded with 7 PWR 17x17 UO2 FAs, 5 wt. % ²³⁵U

Average Burnup (GWd/t _{HM})	Actinides-only	Actinides + 6FPs	Actinides + 15 FPs
10	-2.9 %	-5.5 %	-6.1 %
20	- 6.1 %	-9.1 %	-10.5 %
30	-8.4 %	-12 %	-14 %
40	-10.3 %	-15.2 %	-17.3 %
50	-12.5 %	-17.7 %	-20.2 %

New BUC method based on "Actinides + 6 FPs" used with conservative depletion and criticality calculations gives a reactivity gain of:

□ $\Delta k = 5.5 \% 10 \text{ GWd/ } t_{HM}$ □ $\Delta k = 17.7 \% 50 \text{ GWd/} t_{HM}$

Conclusion

- The advanced BUC method implemented at TN International, based on the consideration of actinides and 6 fission products, allows to <u>extend burnup</u> <u>credit advantages</u> to new transport and storage casks designs
- Calculation codes used in the advanced BUC method (DARWIN 2 and CRISTAL V1) are <u>validated to a large experimental program</u> (PIE, MINERVE, HTC and PF experiments).
- Taking profit of the feedback received from investigations on burnup credit, TN International's <u>current and expected future activities</u> for the transport/storage cask design developments are:
 - Extension of BUC method for 15 FP
 - BUC method for MOX PWR fuel assemblies
 - BUC method for UO₂ BWR fuel assemblyies

Thank you for your attention

LOGISTICS

PATRAM 2010 - October 2010 - Presentation N°143 -p.16