EFFECT OF DYNAMIC LOADING ON COMPRESSIONAL BEHAVIOR OF DAMPING CONCRETE

III.4 Safety of Storage Containers / III.3 Safety of Transport Containers

outline

- damping concrete
- ● research project ENREA
- ● test program
- ● ● test results
- ● ● numerical studies
- ●●●●●●summary

material properties & applications

concrete mixture using expanded polystyrene balls as filler

density ~800 kg/m³

(standard concrete \sim 2400kg/m³)

compressive strength ~ 6 N/mm²

used as foundation in reception hall of German interim storage facilities (e.g. Lingen) two layers damping concrete plates (2*h=50cm) + steel-fibre-screed X

characteristic values

exemplary drop tests (licensing pilot conditiong facility Gorleben, Germany)

data from generalized impact test (drop height 3.3 m, drop weight 212kg)

exemplary of the peneralized impact test (drop height 3.3 m, drop w

•penetration depth

objectives ENREA*

development of numerical methods for analyzing impact limiters subjected to impact or drop scenarios

* funded by the German Ministery of Education and Research cooperation with project QUEST from WTI/GNS

 \triangleright improving the reliabilty of safety assessments ¾optimize dimensions and material selections for impact limiters

wood (spruce) polyurethane foam (FR3718/3730) damping concrete

parameters:

dimensionstemperature loading course and rate specimen orientation support conditions

numerical simulations

selection of appropriate material models

precalculations / sensitivity analysis selection / development of methods for parameter identification simulations of experiments

enhancements / implementation of appropriate material models

project stages

stage 1

servo hydraulic testing facility

cube specimen

displacement-driven compression tests

constant deformation rates $[0.02 - 3000$ mm/s] technical strain up to 70% ∑ 556 experiments

stage 2

drop test facility

cube specimens

impact tests with different compression rates falling weight: stage 1

servo hydraulic testing facility

cube speciment

displacement-driven compression

tests

constant deformation rates

[0.02 – 3000mm/s]

technical strain up to 70%

Σ 556 experiments

Σ 486 experiment

Σ 486 exp

- •cross section corresponding to specimen
- •different drop heights / weights

∑ 486 experiment

stage 3 drop test facility component tests falling weights with different shapes for penetrations tests 15 experiments

test series

first project stage (displacement-driven experiments)

- test series: 1 preliminary + 5 regular tests
- nominal technical strain 70% (max)
- additional quasi-static test to determine scale effect

second / third project stage

cubes $0.1x0.1x0.1m³$

concrete plates: 1x1x0.5m³

drop tests

different drop weights

different drop shapes

experimental set up

holding jig $(10x10x10 \text{ cm}^3)$

measuring system

displacement: triangulation based sensor load parallel to stamp direction:

- •straing gauge instrumented pressure stamp
- •load cell

load transversal:

• bolts equipped with cylindrical strain gauge temperature measurements during loading

unconstrained tests

elastic range up to 1% strain softening after elastic peak failure at approx. 1.5% strain rate dependent

●●●●

constrained tests – 0.02 mm/s

 0.01

0

 Ω

0.005

arithmetic mean

 0.02

strain [-]

0.015

four zone stress-strain relation:

- elastic
- softening softening
- plateau plateau
- densification

considerable scattering considerable scattering

nearly constant ratio lateral / axial stress at high strain levels

●●●●

test results

●●●● test results

constrained tests – 3000 mm/s

dynamic stress-strain relations similar to quasi-static response (elastic / softening / plateau / densification)

elastic and softening zones are partly merged together

mean ratio lateral / axial stress slightly lower , but likewise constant

significant dynamic hardening

strain rate sensitivity

●●●● test results

adaption of material models

● ● ● ● ● Pumerical studies numerical studies

FE model

solver Abaqus explicit

rigid foundation / walls

no thermal coupling

8-node solid elements

reduced integration

validated by simulating experiments with reference materials

studies on mesh size / friction coefficients

isotropic plasticity models (Abaqus library)

crushable foam

nonassociated plasticity model for cellular materials based on monotonic yield curve

Deshpande / Fleck Isotropic constitutive models for metallic foams, J.Mech.Phys.Solids 1989

concrete damaged plasticity

combination of nonassociatedtensile and compressive plasticity and damaged elasticity

Lubliner et al.A plastic damage model for concrete Int J. Solids Struct. 1989

\blacktriangleright failed in reproducing densification at high strains

results

summary

constrained and unconstrained displacement-driven test series with different deformation rates completed

identification of a 4-zone stress-strain relation and significant dynamic hardening

evaluation of applicable numerical material models

simulations based on *crushable foam* yield good agreement with experimental results

further work needed to sucessfully simulate softening behavior

further enquiries: eva-maria.kasparek@bam.de