Rancho Seco Reactor Vessel Segmentation Project & Packaging Large Components

Michael Snyder

October 21–26, 2007 Marrion Doral Miami, Florida USA

Principal Radiological Engineer

Rancho Seco Decommissioning Project

Rancho Seco History

- 2,480 acre site
- 913-MW B&W design; commercial in 1975
- Shutdown June 1989 by referendum
- SAFSTOR option initially chosen with dismantlement to begin in 2008
- Incremental decommissioning started in 1997
 - IAW CEQA, environmental impact conducted for decommissioning activities – resulted in negative declaration
- Board approved full decommissioning in July 1999
- Scheduled License Termination in 2008

Spent Fuel and Greater than Class C Waste

- 10 CFR Part 72 License
- Independent Spent Fuel Storage Installation (ISFSI)
 - Dry Fuel Transfer completed in 3rd quarter 2002
 - NRC Licensed Cask
 - MP 187
 - 21 canisters
 - Cask and Canisters by Transnuclear
 - Remain in Storage until DOE ships to Yucca Mt

Reactor Coolant Pumps

- SCO Wraps
- Gondola Rail Car Conveyance
- Blocking and Bracing Plan

Spent Fuel Racks

- SCO Wraps & Extended Height Metal Container
- Double Drop Highway
 Conveyance

Reactor Vessel Head

- Segmentation Activities
- Cargo Containers
- Standard Highway Conveyance

2 sections of nozzle tops

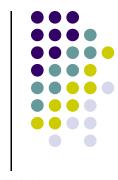
3 sections of flange

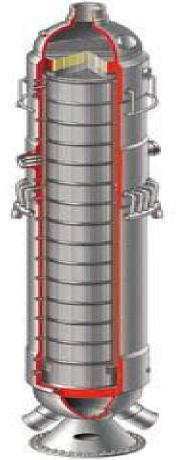
Pressurizer

- Soft Sided SCO Wrap
- Heavy Duty Rail Car
- Blocking and Bracing Plan

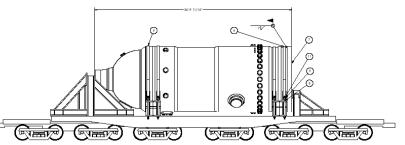
Contaminated Concrete

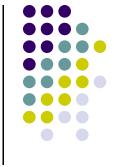
and Soil





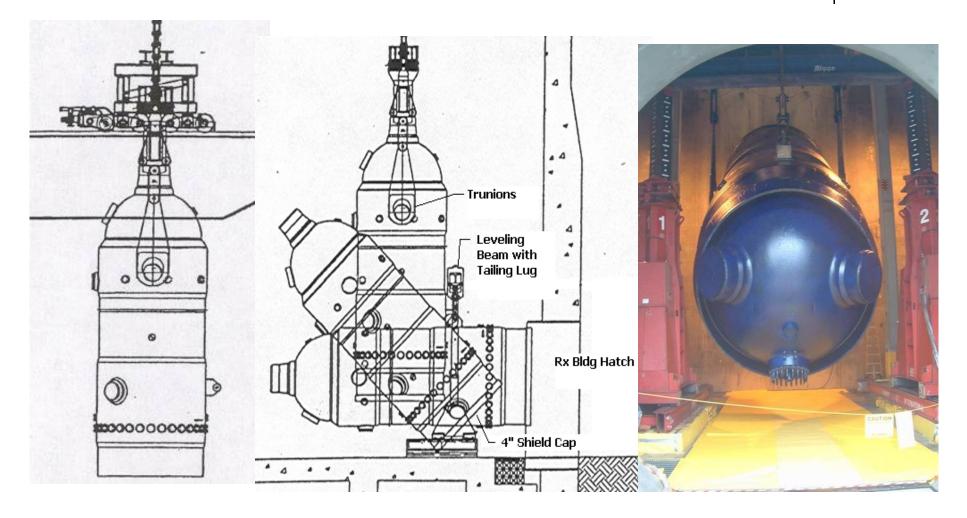
Once Through Steam Generators (OTSG)


- Each OTSG approximately 1,100,000#
- 80' in length & 12' in diameter
- Transportation Evaluation concluded OTSG were too long to ship intact due to length of OTSG and radii of rail route to disposal site
- Decision made to segment in latitudinal direction and have four sections of OTSG
- Rancho Seco worked with MHF-LS to route & clear the sections to disposal site



DOT Exemption Request for OTSG Shipment

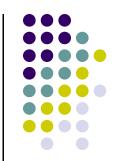
- Not unlike other requests however, the generators would be cut in half
 - Necessary for shipment clearance
- Requested exemption for
 - 49CFR173.403 for demonstration of SCO limits
 - 49CFR173.427 for packaging SCO in IP-2
- Request was prepared with guidance from NRC Generic Letter 96-07, Interim Guidance on transportation of Steam Generators



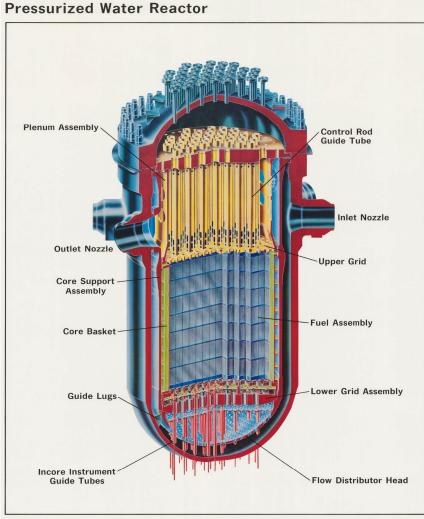
OTSG Structural Evaluation

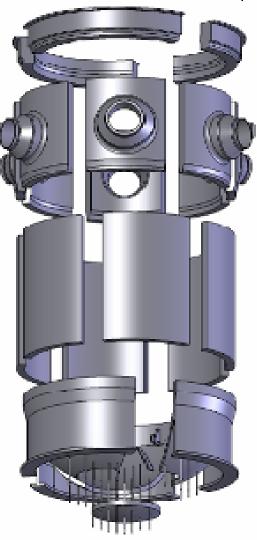
- Each OTSG Section required to meet Industrial Package-2 requirements of 49 CFR 173.411
 - IP-2 Packaging Tests per 173.465(c)&(d)
 - 1' drop test & stacking test
 - OTSG sections evaluated per 173.461 for modified mechanical testing
 - Cut sections would be covered with a 4" thick closure cap – for dose rate shielding and included in drop test analysis
 - All other nozzles & openings covered, welded or torqued
 - Evaluation demonstrated OTSG section ability to withstand stresses from 1' drop in horizontal direction

Removal of OTSG Sections



Onsite Handling of OTSG Sections





Reactor Vessel and Internals

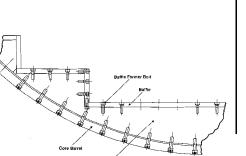
Babcock & Wilcox

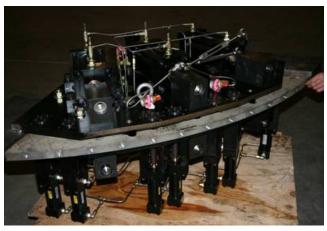
Transportation Evaluation

- Performed in fall of 2001to assess feasibility of shipping intact Reactor Vessel
- Evaluation assessed rail and barge routes from Rancho Seco to Barnwell, SC or Clive, UT
 - 500 ton canister, 18'-6" OD, 38' in length
 - 1) Road from RS to port of Stockton, barged to SC
 - 2) Rail from RS to Houston, barged to SC
 - 3) Rail from RS to Clive
- Option 1 was determined to be most feasible
- Options 2 & 3 would not clear rail restrictions
 - 36-axle CEBX-800 Schnabel over 270' in length
- Option 1 was subsequently dismissed due to issues barging through Panama Canal or around South America
- Segmentation was chosen

Rancho Seco Rx Vessel & Internals

- Operated for a total of 2144 effective power days
- Vessel ~ 680,000 lbs, 17'-6" OD, 32' in height & contained ~ 20 Ci of Co60
- Internals ~ 152,000 lbs & contained ~ 41,200 Ci of Co60


Parent Component	Weight (Kg)	Co60 (Curies)
Baffle Plates (GTCC)	8172	22550
Baffle Formers (GTCC)	3464	6030
Plenum Cover (Class A)	24786	0.1
Plenum Cylinder (Class A)	6650	0.15
Control Rod Guide Tubes (Class A)	6892	2.1
Upper Grid (Class B)	6283	200
Core Support Shield (Class A)	28579	27.5
Core Barrel (Class C)	18147	7440
Thermal Shield (Class C)	18799	3010
Lower Internals- Top Section ((Class B)	12643	1910
Lower Internals- Middle Section (Class A)	12697	32.8
Lower Internals- Lower Section (Class A)	5154	6.5


Reactor Internals Segmentation

Bolt Shearing Tool for removing Baffle Formers from Core Barrel

Plenum

Core

Support


Shield

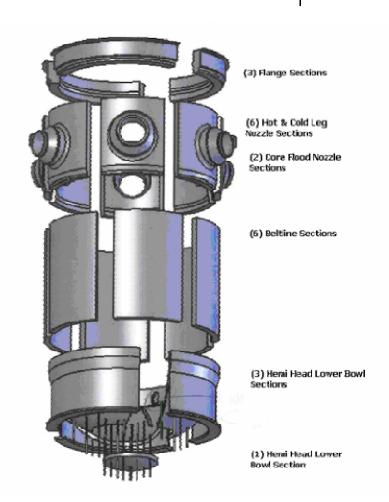
Circular saw for vertical cuts

Packaging Class B & C Reactor Internals

Transfer of Class B and C waste from Cavity to Storage

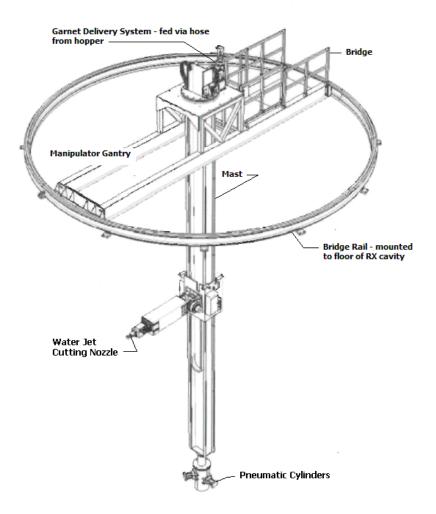
Packaging Class A Reactor Internals

Positioning Shielding around boxes loaded into Gondola car


Type A Box with Core Support Shield Sections

Reactor Vessel Segmentation Plan

- 3 Flange sections
 - 25,000 lbs each
- 6 Hot & Cold Leg Nozzles
 - 33,400 lbs. each
- 2 Core Flood Nozzles
 - 13,500 lbs. each
- 6 Beltline Sections
 - 34,500 lbs. each
- 3 Lower Bowl Hemi Heads
 - 35,000 lbs. each
- 1 Center Bowl
 - 10,000 lbs.

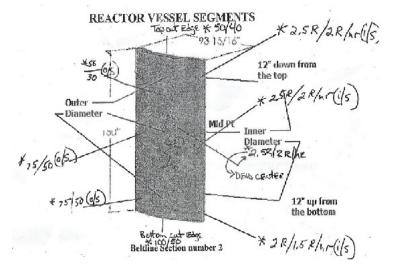


Reactor Vessel Segmentation Equipment

- Abrasive Water Jet
 - Delivered Garnet Media
 @ 50,000 psig
 - No generation of vapors
 - Capable of piercing holes
 - Easy collection of secondary waste

Waterjet Manipulator

Reactor Vessel Segmentation


Segmenting a section of Vessel Flange

Rigging and removing a beltline section from the vessel

Dose Rate & Characterization Verification Method

- Contact & 12" dose rates in air were obtained @ multiple locations along inner & exterior diameters
 - All measured readings attributed to activation
 - Average of 12" readings used to determine Co60 activity per section
 - Sections modeled in Microshield v5.05 with iterations of entering Co60 source strengths to infer comparable 12" dose rate
 - Loose contamination contribution assessed for total surface area
 - Results known and calculated
 - Total weight, volume and surface area
 - Total loose contamination
 - Concentration (uCi/cm3), Specific Activity (uCi/g) and total activity for Co60
 - A2 SOF and LSA II test results

Reactor Vessel Packaging

- In all cases, all sections, as packaged for shipment, were verified to
 - Meet waste class A and requirements for LSA II
 - Contain < A2 quantity of radionuclides
 - Be shipped in excepted packaging per 49 CFR 173.427 (b)(4)

Lower Bowl Hemi Head shipped in 20' Sealand

Beltline section packaged into metal box prior to introduction of grout

Reactor Vessel Beltline Transportation

Three sections of beltline in each box - shipped - after grouting