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1. Introduction 
 
In current certificates of package approval the arrangement of water and guide tubes within the array of fuel rods of 
a fuel assembly is specified in detail. Fuel assemblies with deviating water and guide tube arrangements or missing 
rods are not allowed to be loaded into the casks. The reason behind is that the reactivity of a standard fuel 
assembly increases if some rods are removed. For a certain number and arrangement of missing rods a maximum 
of reactivity is reached. Due to the missing fissile material the reactivity will decrease again if further rods are then 
removed. 
 
For the comprehensive assessment of the maximum of reactivity all possible configurations of fuel rods and 
missing rods have to be investigated. The paper describes the problem at hand in detail giving estimates for the 
complexity of the analysis. 
 
A complete analysis is only possible for cases with a very small number of fuel rods. Fuel assemblies which are 
used in reality can only be treated with approximation methods. The paper describes two such methods. With the 
first method up to 8 x 8 fuel assemblies can be analyzed in detail by using reasonable simplifications and 
assumptions. For fuel assemblies with a higher number of fuel rods a Monte Carlo approach is used. This second 
method can be applied to all fuel assemblies currently in use. 
 
The accuracy of both approximation methods is compared for a 8 x 8 fuel assembly. The paper describes the 
statistical uncertainties and the influence of the parameters used for the individual calculations. Results are given 
for some of the mostly used fuel assembly types. 
 
Finally, a procedure for the proof of criticality safety of fuel assemblies with missing fuel rods is defined. The 
application of this procedure will allow more flexibility in the definition of the licensed contents with respect to 
number and arrangement of missing rods in the fuel assemblies. 
 
2. The Problem 
 
Fig. 1 shows the cross section of a 4 x 4 assembly consisting of maximal 16 fuel rods. The fuel (red) consists of 
uranium with an enrichment of 5% U-235. The pellet diameter is 9.14 mm. The cladding (green) consists of 
Zirkaloy-2 with an outer diameter of 10.7 mm and an inner diameter of 9.7 mm. Between pellet and cladding void is 
assumed, between the fuel rods water (light blue) of density 1 g/cm3. The fuel assembly is surrounded by a 20 cm 
water reflector (dark blue), which is shown only partially. Axially, the model is infinite. 
 
It would be natural to assume that the completely filled fuel assembly is the most reactive configuration. However, 
removal of fuel pins leads to a slightly larger reactivity. The configuration shown in Fig. 2 with two missing fuel rods 
is actually the most reactive configuration. 
 
The problem is to find the most reactive configuration. For the comprehensive assessment of the maximum of 
reactivity all possible configurations of fuel rods and missing rods have to be investigated. Unfortunately, the 
number of possible configurations for a given fuel assembly increases exponentially with the number of the grid 
positions. Assuming n to be the number of grid positions on one side of the assembly – the assembly such having 
n x n grid positions if completely filled – the number of possible configurations is 
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1≈C  takes into account that rotated or mirrored configurations need only be analyzed once. 
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This is a NP-hard problem and considered to be intractable but for very small n. Tab. 1 lists the possible 
configurations and the required time for the complete analysis for some fuel assembly types. For this table it is 
assumed that an individual criticality calculation takes 1 minute which would apply for a fast modern PC. The table 
shows that even for simple fuel assembly types a complete analysis is impossible. 
 
assembly configurations to be analyzed required calculation time 

4 x 4 10222 1 week 
5 x 5 6 x 106 11 years 
6 x 6 1 x 1010 22000 years 
7 x 7 1 x 1014 200 Million years 
8 x 8 3 x 1018 6 000 billion years 

(approx. 400 times the age of the universe) 
16 x 16 2 x 1076 

(approx. the number of atoms in the universe) 
infinite 

 
Tab. 1. Number of Assembly Configurations and required Calculation Time 
 

 
 
Fig. 1. A simple 4 x 4 fuel assembly 
 

 
 
Fig. 2. The most reactive arrangement 
 

 
3. Criticality Safety Analysis Code 
 
For the criticality safety analysis the calculation sequence CSAS25/KENO V of the SCALE4.4A package [1] was 
used. The fuel was treated as homogeneous and the Dancoff factor was specified by using the MORE DATA 
option. For the calculations 203 generations were used in each run unless specified otherwise in the paper. By 
using these options the processing time for one calculation was approx. 1 minute. The standard deviation of the 
KENO V calculations is designated as σKENO in the following. 
 
4. General Assumptions for the Approximation Methods 
 
For the approximation methods is assumed that for every most reactive configuration all outer grid positions 
contain fuel rods. Missing rods are assumed only in inner grid positions. This is a reasonable assumption as 
missing rods in outer grid positions would inevitable lead to higher neutron leakage and hence to reduced reactivity 
of the configuration. 
 
5. Approximation Method 1 
 
The problem defined above can only be solved with approximation methods. Approximation method 1 assumes 
that a subset of all possible configurations can be constructed which contains the most reactive configurations. This 
subset is much smaller than the total set of all possible configurations. The algorithm is given below. 



 
definitions:  
n x n the number of grid positions of the complete fuel assembly 
k = (n – 2) x (n – 
2) 

the analyzed part of the grid positions 

conf(i, j) configuration j of fuel rods with i missing rods 
set(i) set of all configurations conf(i, j), j = 1, ..., m with i missing rods 
calculate keff for the one configuration in set(0) 
set kmax(0) = keff 
calculate keff for all configurations in set(1) 
set kmax(1) = MAX[keff of all configurations in set(1)] 
calculate keff for all configurations in set(2) 
discard all configurations from set(2) where keff + f σKENO < kmax(1) giving red(2) 
set kmax(2) = MAX[keff of all configurations in red(2)] 
repeat until red(i) is empty 

 construct set(i) from set(i-1) by removing in each possible position one fuel rod from every 
configuration in red(i - 1) 

 calculate keff for all configurations in set(i) 
 discard all configurations from set(i) where keff + f σKENO < kmax(i - 1) giving red(i) 

if red(i) is not empty then set kmax(i) = MAX[keff of all configurations in red(i)] 
set kmax(total) = MAX[kmax(1) ... kmax(i - 1)] 
 
Algorithm 1. Approximation Method 1 
 
The processing time and the accuracy of Algorithm 1 depends only on the factor f which is relevant for constructing 
the subset of configurations to be considered in the next calculation step. If this factor is chosen too large then the 
number of configurations in the subset remains large. This leads to a long processing time. If this factor is chosen 
too small then the number of configurations in the subset is reduced to a few configurations. It may happen then 
that the most reactive configuration is not found. 
 
Algorithm 1 is applicable for fuel assemblies with up to 8 x 8 fuel rods. Tab. 2 lists the configurations calculated and 
compares the required processing time with the complete analysis. The table takes into account that the outer 
positions are always set with fuel rods. Therefore the analyzed part is smaller than the complete fuel assembly. 
The factor f was set to 1. 
 
Tab. 2 shows a significant reduction of processing time. Nevertheless, the processing time increases also for 
algorithm 1 exponentially. Compared with the full analysis more fuel types can be analyzed, but important fuel 
types are still out of reach. 
 
assembly inner 

part 
configurations 

for full 
assembly 
analysis 

configurations for 
full analysis of 

inner part 

configurations 
analysed with 

algorithm 1 

reduction factor 
compared to full 

analysis 

reduction factor 
compared to 

partial analysis 

4 x 4 2 x 2 10222 6 5 5 x 104 1.2 
5 x 5 3 x 3 6 x 106 102 68 8 x 104 1.5 
6 x 6 4 x 4 1 x 1010 10222 1562 6 x 106 6.5 
7 x 7 5 x 5 1 x 1014 6 x 106 7641 1 x 1010 785 

8 x 8 6 x 6 3 x 1018 1 x 1010 58345 5 x 1013 2 x 105 
 
Tab. 2. Configurations analyzed with algorithm 1 
 
6. Approximation Method 2 
 
Approximation method 2 uses a Monte Carlo approach to construct a subset of all possible configurations. For this 
subset a statistical evaluation is carried out to define the band where the most reactive configuration is to be 
expected. This subset is calculated in linear time. The algorithm is given below. 
 



 
definitions:  
n x n the number of grid positions of the complete fuel assembly 
k = (n – 2) x (n – 2) the analyzed part of the grid positions 
conf(i, j) configuration j of fuel rods with i missing rods 
set(i) set of all configurations conf(i, j), j = 1, ..., m with i missing rods 
calculate keff for the one configuration in set(0) 
set kmax(0) = keff 
calculate keff for all configurations in set(1) 
set kmax(1) = MAX[keff of all configurations in set(1)] 
repeat for set(2) to set(k – 2) 

 select randomly N1 configurations from set(i) giving set rand1(i) 
 calculate keff for all configurations in rand1(i) 

set kmax(i) = MAX[keff of all configurations in rand1(i)] 
calculate keff for all configurations in set(k - 1) 
set kmax(k - 1) = MAX[keff of all configurations in set(k - 1)] 
calculate keff for the one configuration in set(k) 
set kmax(k) = keff 
set kmax(total) = MAX[kmax(0) ... kmax(k)] 
define p and q such that for all p ≤ i ≤ q 
kmax(i) + f σKENO > kmax(total) 
repeat for set(p) to set(q) 

 select randomly N2 configurations from set(i) giving set rand2(i) 
 calculate keff for all configurations in rand2(i) 

set kmax(i) = MAX[keff of all configurations in rand2(i)] 
calculate statistical values for all keff of rand2(p), ..., rand2(q) 
 
Algorithm 2. Approximation Method 2 
 
The processing time and the accuracy of Algorithm 2 depends only on the numbers N1 and N2 which are relevant 
for constructing the subset of configurations to be considered in the calculation. N1 should be not too large as it is 
used for the initial calculations to narrow down the relevant configurations. N2 is used for the final calculations and 
has direct influence on statistics and accuracy. 
 
Algorithm 2 is applicable for all fuel assemblies currently in use with up to 18 x 18 fuel rods or even more. Tab. 3 
lists the configurations calculated and compares the required processing time with the complete analysis. The table 
takes into account that the outer positions are always set with fuel rods. Therefore the analyzed part is smaller than 
the complete fuel assembly. N1 was set to 100 configurations for the initial calculations and N2 was set to 500 
configurations for the final calculations. Tab. 3 shows that the processing time for algorithm 2 increases linearly. 
 
assembly inner 

part 
configurations 

for full 
assembly 
analysis 

configurations 
for full analysis 

of inner part 

configurations 
analysed with 
algorithm 2 

reduction factor 
compared to full 

analysis 

reduction factor 
compared to 

partial analysis 

8 x 8 6 x 6 3E+18 1E+10 8734 4E+14 1E+06 
9 x 9 9 x 9 4E+23 9E+13 11368 4E+19 8E+09 

10 x 10 8 x 8 2E+29 3E+18 15283 1E+25 2E+14 
11 x 11 9 x 9 4E+35 4E+23 17410 3E+31 2E+19 
12 x 12 10 x 10 4E+42 2E+29 21329 2E+38 1E+25 
13 x 13 11 x 11 1E+50 4E+35 22662 6E+45 2E+31 
14 x 14 12 x 12 2E+58 4E+42 24985 7E+53 1E+38 
15 x 15 13 x 13 9E+66 1E+50 32723 3E+62 3E+45 
16 x 16 14 x 14 2E+76 2E+58 38251 5E+71 4E+53 

 
Tab. 3. Configurations analyzed with algorithm 2 
 



7. Accuracy of the Approximation Methods 
 
A complete analysis was carried out for 3 x 3 and 4 x 4 fuel assemblies. For 5 x 5 fuel assemblies only 
configurations up to 5 missing fuel rods were fully analyzed. The results achieved with Algorithm 1 and the full 
analysis were identical. 
 
An 8 x 8 fuel assembly was used to compare the accuracy of Algorithm 1 and Algorithm 2. Tab. 4 shows that the 
two algorithms give the same results taking into account statistical uncertainties. 
 

Algorithm 1 Algorithm 2 
generat. water 

holes 
keff σKENO calculations generat. water 

holes 
keff σKENO calculations 

203 11 0.6571 0.0019 58345 203 15 0.6562 0.0016 8734 
     1203 13 0.6529 0.0007 7289 

 
Tab. 4. Comparison of Algorithm 1 and Algorithm 2 for 8 x 8 fuel assemblies 
 
In Fig. 3 and 4 the distribution of calculated keff values in a band of configurations around the most reactive 
configuration is shown. For this all configurations in rand2[i], i = h1, ..., h2 were taken into account, where kmax(i) + 
g σKENO > kmax(total). For Fig. 3 following applies: h1 = 10, h2 = 21 and g = 3; for Fig. 4 applies: h1 = 10, h2 = 19 
and g = 3. Fig. 3 is based on 5847 and Fig. 4 on 4764 different configurations. 
 
Fig. 3 and 4 show that the distribution (calculated) complies rather good with a normal distribution (normal). The 
statistical values of both figures are given in Tab. 5. This table shows that the average keff for the considered band 
of configurations does not depend on the number of generations run for each configuration. The standard deviation 
σAlgorithm2 of all configurations is the sum of the standard deviation σKENO of the KENO calculations and the standard 
deviation of the reactivity of the individual configurations which can be seen by comparing the columns average 
σKENO and σAlgorithm2. The maximal keff is for the statistical values listed in Tab. 5 within 3 standard deviations from 
the average keff. 
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Fig. 3. Statistics for Algorithm2, 8 x 8 fuel assembly, 203 
generations per run 
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Fig. 4. Statistics for Algorithm2, 8 x 8 fuel assembly, 
1203 generations per run 
 

 



 
number of 

generations 
average keff average σKENO σAlgorithm2 calculated maximal 

keff 
203 0.6460 0.0017 0.0035 0.6562 
1203 0.6470 0.0007 0.0023 0.6529 

 
Tab. 5. Statistical values for Fig. 3 and 4 
 
8. Results 
 
Results are shown for all fuel assemblies from 3 x 3 to 16 x 16 in Fig. 5 for the full configurations with fuel rods in 
all positions and for the most reactive configuration. Fig. 6 shows the reactivity difference between the full 
configuration and the most reactive configuration. 
 

number of fuel rods on one side

ke
ff

4 6 8 10 12 14 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

keff max
keff complete

Frame 001 ⏐ 20 Aug 2004 ⏐ comparison of full and most reactive configurations

 
 
Fig. 5. keff values for 3 x 3 to 16 x 16 fuel assemblies, full 
(lower curve) and most reactive (upper curve) 
configurations 
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Fig. 6. keff-difference between full and most reactive 
configurations 
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Fig. 7. Number of missing fuel rods in the most reactive 
configuration 
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Fig. 8. Maximal keff in relation to the number of missing 
fuel rods for a 8 x 8 fuel assembly 



The number of missing fuel rods in the most reactive configurations is shown in Fig. 7. The typical relation between 
the maximal keff and the number of missing fuel rods is shown in Fig. 8 for a 8 x 8 fuel assembly. 
 
Fig. 5 shows that keff exceeds 0.95 for a 15 x 15 fuel assembly. For a 16 x 16 fuel assembly with approx. 70 
missing fuel rods keff reaches 1.0. From Fig. 6 a linear relation between number of fuel rods on one side and 
difference of keff for the full and most reactive configuration can be assumed. The number of missing fuel rods 
increases linearly with the total number of fuel rod positions in the assembly. Fig. 8 shows a wide maximum of the 
reactivity in relation to the number of missing fuel rods. 
 
Fig. 9 and 10 show the two most reactive configurations calculated with Algorithm 1 (Fig. 9) and Algorithm 2 (Fig. 
10).  
 

 
 
Fig. 9. Most reactive configuration for a 8 x 8 fuel 
assembly, 11 missing rods, keff = 0.6571 ± 0.0019, 
calculated with Algorithm 1 

 
 
Fig. 10. Most reactive configuration for a 8 x 8 fuel 
assembly, 15 missing rods, keff = 0.6562 ± 0.0016, 
calculated with Algorithm 2 

 
Finally, for some of the mostly used fuel assemblies the most reactive configurations calculated with Algorithm 2 
are shown in Fig. 11 to Fig. 14. 
 

 
 
Fig. 11. Most reactive configuration for a 9 x 9 fuel 
assembly, 18 missing rods, keff = 0.7143 ± 0.0018 
 

 
 
Fig. 12. Most reactive configuration for a 10 x 10 fuel 
assembly, 25 missing rods, keff = 0.7266 ± 0.0018 
 



 
 
Fig. 13. Most reactive configuration for a 15 x 15 fuel 
assembly, 49 missing rods, keff = 0.9684 ± 0.0019 
 

 
 
Fig. 14. Most reactive configuration for a 16 x 16 fuel 
assembly, 68 missing rods, keff = 1.0000 ± 0.0020 
 

 
9. Proposed Guideline for Proof of Criticality Safety 
 
Given problem: analysis of a n x n fuel assembly 
 
Step 1: define W = ¼ x n x n the probable number of missing fuel rods which leads to maximal reactivity (derived 
from Fig. 7); define a range of 0.75 x W – 1.25 x W of missing fuel rods and calculate keff for a sufficiently large 
number of randomly chosen configurations with all numbers of missing fuel rods in the range defined above. 
 
Step 2: Check if the calculated values of keff comply with a normal distribution (see Fig. 3 and 4); if this can be 
proved, assume the value of keff, max which must comply with the limit given in the Regulations to be defined by 
 
keff, max = MAX[keff of all configurations with missing rods in the range 0.75 x W – 1.25 W] + 2 x σAlgorithm2 
 
Example: assume a 8 x 8 fuel assembly 
 
● W = ¼ x 8 x 8 = 16 
● calculate keff for a sufficiently large number of configurations with 12 to 20 missing fuel rods 
● the distribution of calculated values complies with a normal distribution (Fig. 3), hence 
● keff, max = 0.6562 + 2 x 0.035 = 0.6632 

 
10. Summary 
 
The paper shows that the criticality assessment of fuel assemblies with missing fuel rods is feasible. Algorithm 2 is 
applicable to all fuel assemblies currently in use in commercial BWR and PWR nuclear facilities. 
 
The required computer time for all fuel assembly types presently in use is in the range of several days to one 
month with a state of the art desktop computer. For the more complex analysis of a complete transport cask only 
several of the most reactive configurations need to be chosen as relevant cases, then. 
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