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INTRODUCTION 

The severity of the IAEA accident conditions test requirement (IAEA 1990) of an impact onto an essentially 
unyielding target from a drop height of 9 meters encompasses a large fraction of all real world impacts. This is true, 
in part, because of the unyielding nature of the impact target. Impacts onto the unyielding target have severities 
equivalent to higher velocity impacts onto real targets which are not unyielding. The severity of impacts with 
yielding targets is decreased by the amount of the impact energy absorbed in damaging the target. In demonstrating 
the severity of the regulatory impact event it is advantageous to be able to relate this impact onto an essentially 
unyielding target to impacts with yielding targets. 

BACKGROUND 

There are several reasons for wanting to relate the severity of impacts with yielding targets to that of impacts with 
an unyielding target The motivation for making the comparison will somewhat dictate the way the comparison is 
made. In the Final Environmental Statement on the Transportation of Radioactive Material by Air and Other Modes 
(US NRC 1977), which is a risk assessment for the shipment of all types of radioactive material, the properties of the 
packaging were not known. This forces the relationship between impact velocities for yielding and unyielding 
surfaces to be independent of package stiffness. For this reason a method was developed that compared the 
penetration of a rigid sphere into different surfaces, with steel considered to be the unyielding target Velocities 
resulting in equal penetration depth were considered to be equivalent. This led to the following relationship for 
determining equivalent impact velocities: 

y [1- 2
] E 1~ yielding = ~ [-s] 

Vsteel 1-v Ey 
s 

(EQl) 

where V yielding is the velocity for impact onto a yielding surface, V steel is the velocity for impact onto an unyielding 
surface, Vy and Ey are Poisson's ratio and Young's modulus for the yielding surface material, and v, and E, are 
Poisson's ratio and Young's modulus for steel. This method was only applied to aircraft accident scenarios and the 
distribution of target hardness was determined by the ground surface composition along airline flight paths. 
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In the Modal Study (Fischer et al. 1987), a risk assessment for the transport of spent fuel, the properties of the 
package were known. This allows the relationship between yielding and unyielding targets to depend on package 
characteristics. To determine equivalent impact velocities an equivalent damage technique was used. This technique 
resulted in a relationship for velocities of: 

y y;oiding = J I + d, 
V unyielding de 

(EQ2) 

where V unyielding is the impact velocity for impacts onto an unyielding surface, <Is is the deformation of the yielding 
target caused by an impact of a rigid package at a velocity such that the impact force is the same as for the impact of 
the package on an unyielding target, and de is the deformation of the package caused by impact on an unyielding 
target. 

METHOD 

The method discussed in this paper for relating impacts with yielding targets to an impact with an unyielding target 
will apply the principle of conservation of energy. Immediately before the impact the energy of the package and 
target is equal to the kinetic energy of the package. At the point of maximum deformation of the package and the 
target the velocity is zero, so all of the energy in the system is strain energy. For impacts onto a rigid target the strain 
energy of the system is all in the package. During an impact with a real target the strain energy of the system is in 
both the package and the target. For casks, the strain energy in the package is typically divided into strain energy in 
the impact limiter and strain energy in the cask body, with the strain energy in the impact limiter typically being 
orders of magnitude larger than the strain energy in the cask body. If inertial effects are ignored the force acting on 
the cask body is the same as the force acting on the impact limiter and target for any time during the impact event 
This condition can be viewed as a spring-mass system with a set of three massless nonlinear springs acting in series. 
Figure 1 shows this simplification of the impact event. Notice in this figure that the impact limiter target springs are 
treated as massless. For the impact limiter this assumption is generally quite accurate because its mass is usually 
much less than the mass of the cask. Neglecting the mass of the target in most cases does not introduce a large error 
in the analysis because the velocity, and therefore kinetic energy, of this mass is usually very small. 

Cask 
Impact 
Limiter Target 

Figure 1 - Simplified spring model for impacts. 

Rigid 
Surface 

The strain energy in each of the springs for a given displacement is equal to the area under the force-deflection curve 
up to that displacement. For a linear spring this results in the familiar equation E = 1/2Ko2, where E is the strain 
energy in the spring, K is the linear spring constant, and o is the displacement of the spring. For a non-linear spring 
with a force-deflection relationship defined by F(x), equation 3 shows the mathematical expression for the strain 
energy: 

s 
E = JF(x)dx 

0 

(EQ3) 
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Where: 

E = The strain energy in the spring. 
F(x) = The force in the spring as a function of displacement 
x = The displacement of the spring. 
a = The displacement of the spring at the force level of interest 

In the system depicted in Figure 1, the total strain energy of the three springs must be equal to the kinetic energy of 
the mass at impact. and the force in the three springs is equal. These two conditions are the constraints on the problem 
and may be expressed mathematically as: 

1 2 2 MV yielding = Ec + Ei + Et (EQ4) 

and 

F =F.= F 
C I t (EQS) 

where M is the mass of the cask and impact limiter, V yielding is the impact velocity onto a yielding target. Ec, Ej, and 
~ are the strain energies in the springs representing the cask body, impact limiter, and target, and Fe, Fi, and F1 are 
the instantaneous forces in these springs. 

For impacts onto an unyielding target the entire kinetic energy of the mass must be converted into strain energy of 
the cask and impact limiter. This implies that the strain energy in the springs representing the cask and impact limiter 
is equal to the kinetic energy of the mass for an impact onto an unyielding target Expressing this mathematically: 

1 2 
Ec + Ei = 2 MV unyielding (EQ6) 

where V unyielding is the impact velocity onto an unyielding target Equations 4 and 6 can be combined to provide a 
relationship for velocities of: 

V yielding 

V unyielidng 

EXAMPLE PROBLEM 

(EQ7) 

The method described above will be demonstrated with the following example problem. A 90,700 kg (100 ton) rail 
cask impacts a hard soil with a velocity of 26.8 m/s (60 MPH). The impact limiter for this cask is designed using 
simplified relationships to limit the deceleration from the regulatory drop to 40 g with a crush of 0.23 m, which is 
below the lock-up deflection of the impact limiting material. This impact limiter is within the normal range used for 
this type of package, but it is softer than most In the regulatory 9 meter drop the cask has an actual acceleration of 
43.5 g and there is 0.236 m of crush in the impact limiter. The force deflection curve for the impact limiter is shown 
in Figure 2, along with force deflection curves for the cask body and the hard soil target. For this case the force 
displacement relationship for the cask body is: 

- Bx 
F c = A ( 1 - e c + Cxc) (EQ8) 

the force displacement relationship for the impact limiter is given by: 

(EQ9) 
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Figure 2- Force-displacement curves for a rail cask body, its impact limiter, and a hard soil 
target. 

and the force displacement curve for the hard soil target is given by: 

(EQ 10) 

In these equations A-Pare constants that defme the curves with the values listed below, Xc. xi, and xl are expressed 
in meters and the forces Fe, Fi, and Flare expressed in Newtons: 

A = 89.0x I06 N 
B = 131 m-1 

C =0.656m-1 

D = 35.6 x 106 N 
E = 98.4 m-1 

F =0.1 

G = 13.12m-1 

H =0.244m 
J = 9.81 m-1.922 

K = 1.76x 106 N.m 
L = 1.922 

N =9.84m-1 

P =4.92m-1 
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These equations were developed by fitting experimental (Bonzon and Schamaun 1976, Gonzales 1987, and 
Waddoups 1975) and analytical data. It would also be possible to use experimental data directly and express the 
relationships between force and displacement in tabular fonn. This method will require numerical integration of the 
force-displacement curves to calculate the strain energy associated with each spring. For the equations above it is 
possible to integrate explicitly, resulting in the expressions below for strain energy. 

s, 

Ei = JFidxl 
0 

= n[ Bi + ~ (e-EI)'-1) + ~ e-GH (e
0
1)'-1-GBi) J 

s, 

J [ L -PI) P -NS J 
Et = F tdxt = K J Bt + e '- 1 - N ( e '- 1) 

0 

(EQ 11) 

(EQ 12) 

(EQ 13) 

The sum of the strain energies for the three springs must be equal to the kinetic energy at impact, which is equal to 
1/2MV 1

2, where V 1 is equal to 26.8 m/s and M is equal to 90,700 kg. This gives a value for the kinetic energy of 
32.6 x to6 N·m. To determine how this energy is distributed between the cask body, the impact limiter, and the target 
a complex system of non-linear equations must be solved. Generally for problems of this nature it is easier to solve 
them numerically with the aid of a computer, but it is possible to use a trial and error method for the solution. Solving 
this system of equations for this problem yields the following results. The strain energy in the cask body is 
0.09 x to6 N·m, the strain energy in the impact limiter is 8.69 x 1o6 N·m, and the strain energy in the target is 
23.82 x 1o6 N·m. The force acting on the three springs is 39.4 x loti N (equivalent to 44.3 g acceleration). The elastic 
displacement of the cask body spring is 4.4 mm, the displacement of the impact limiter spring is 0.252 m, and the 
displacement of the target spring is 1.20 m. The sum of the energy in the cask and impact limiter springs is 8.78 x 
100 N·m, which is the kinetic energy for a 13.9 m/s impact onto an unyielding target, using Eq. 6. 

If we consider a 26.8 m/s impact of this cask onto the yielding target without its impact limiter the force in the cask 
and target springs is 45.5 x 1o6 N (equivalent to 51.1 g acceleration), the strain energy in the cask body spring is 0.14 
x 106 N·m, and the strain energy in the target spring is 32.5 x 1cf N·m. The elastic displacement of the cask body 
spring is 5.4 mm and the displacement of the target spring is 1.41 m. The equivalent velocity for an impact onto an 
unyielding target is 1.74 m/s (3.9 MPH). In the two cases the damage to the cask body is likely to be very small or 
non-existenL This is indicated by the lack of inelastic deformation in the cask body springs. (Note from Figure 2 that 
a force of 45.5 x lcf N is still well within the linear portion of the force-displacement curve for the cask body spring.) 

This example demonstrates an important fact concerning target hardness. A target that is hard for one package may 
be soft for another package. The package system with an impact limiter is not as stiff as the package without the 
impact limiter. In the case of the package with the impact limiter a significant amount of the impact energy is 
absorbed by the impact limiter, which is only slightly stiffer than the target for this level of loading. For the package 
without an impact limiter almost all of the impact energy is absorbed by the target because the cask body is much 
stiffer than the targeL 
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EFFECT OF PACKAGE AND TARGET STIFFNESS 

The effect of package and target stiffness on the relative damage, as measured by defonnation, caused by impacts 
onto yielding targets can be demonstrated by varying the impact limiter and target stiffnesses. For this exercise the 
energy absorbed by the package itself is ignored because it is insignificant compared to the amount absorbed by the 
impact limiter and target The target is considered to be a linear spring with variable stiffness and the impact limiter 
is considered to be a bi-linear spring with nearly constant crush force. The crush force for the impact lli.uter depends 
on the g level desired for the impact For each impact limiter and target stiffness the impact velocity required to 
produce the same amount of damage as that from a 9 m free fall (13.4 m/s impact velocity) onto an unyielding target 
is calculated Two packages are considered, a 90,700 kg rail cask and a 23,000 kg truck cask. For the rail cask three 
different impact limiters are used, one resulting in approximately 40 g acceleration, one with approximately 60 g 
acceleration, and one with approximately 80 g acceleration. For the truck cask four impact limiters are considered, 
with approximate accelerations of 40, 60, 80, and 100 g. Figure 3 shows the resulting equivalent impact velocities 
required for the three rail casks and Figure 4 shows the equivalent velocities for the four truck casks. The linear 
stiffness that approximates the force deflection curve for the hard soil target in the precedin~ example is 3.3x107 

N/m. From these two figures it can be seen that targets with stiffness r,eater than about lxlO N/m can be treated as 
essentially unyielding and targets with stiffness less than about lxlO N/m cause very little damage to the package. 
This result is very package specific and should not be thought of as globally applicable. For smaller,less stiff 
packages targets with stiffnesses in the range of 1xlo6 N/m may appear to be essentially unyielding. For these 
smaller packages it is less likely to have targets with these high stiffness levels because the contact area between the 
package and the target is also smaller. 
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Figure 3 - Impact velocity onto a yielding target that causes the same damage as a 9 m 
impact onto an unyielding target for a 90,700 kg rail cask. 
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Figure 4 - Impact velocity onto a yielding target that causes the same damage as a 9 m 
impact onto an unyielding target for a 23,000 kg truck cask. 

LIMITATIONS 

To apply the method described in this paper for relating impacts with yielding targets to impacts with an unyielding 
target the user must know the load-displacement properties of the target as well as the cask body and impact limiter. 
For most radioactive material shipping packages the cask body is much more rigid than the impact limiter, and a close 
approximation to the solution can be obtained by assuming the cask is rigid. This reduces the spring system to two 
springs: one representing the impact limiter and one representing the target. For many targets, such as vehicles and 
posts, the amount of energy they can absorb before failing is fmite. In these cases, if the impact energy is greater than 
the energy absorbed by the cask body, impact limiter, and target at the time the target fails, the package will not be 
stopped by the impact and will have a residual kinetic energy. 

Modelling the cask body, the impact limiter, and the target as massless springs implies that the impact event is one
dimensional and quasistatic. That is, there is no load transmitted nonnalto the direction of motion, the forces are 
applied as distributed loads, and there are no inertial or strain rate effects. For packages such as the one in the 
example, where the cask body is much stiffer than the impactlimiter,loads at this interface that are nonnalto the 
direction of motion have little significance and point loads are unlikely so the one dimensional crush is an accurate 
approximation. At the interface between the impact limiter and the target it is quite likely that loads in the transverse 
direction will cause crushing of either the impact limiter or the target. which will result in some energy absorption. 
This fact will tend to reduce the severity of the impact on the yielding target compared to the impact modelled as one 
dimensional crush. Severe impact tests on small packages (Bonzon and Schamaun 1976) showed this result by 
differences in failure mode. Impacts onto soil targets that had defonnations of the cask body similar to lower velocity 
impacts onto an unyielding target did not result in gross failure of the containment boundary, while the impacts on 
the unyielding target did. This result could also be caused by higher strain rates for the impacts onto the unyielding 
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target. The change in failure mode caused by transverse forces or strain rate effects is impossible to model as an 
impact onto an unyielding target at a lower velocity. Tile method of this paper considers the impact onto the yielding 
target to be more severe than it actually is. For the purpose of risk assessments or hazard communications this result 
is conservative. 

CONCLUSIONS 

A mathematically rigorous method is developed for relating impacts with yielding targets to lower velocity impacts 
with unyielding targets. Tile method correctly models the mechanics of the impact and the conversion of kinetic 
energy to strain energy. An important result shown by the example problem is that apparent target hardness depends 
on the stiffness of the impacting package. For a caslc with impact limiters a 26.8 rn/s impact onto hard soil results in 
equivalent forces as a 13.9 rn/s impact onto an unyielding target. For the same cask without the impact limiters a 
26.8 m/s impact onto hard soil is equivalent to a 1.74 m/s impact onto an unyielding target This is one reason why 
non-technical members of the public often have difficulty realizing the severity of the regulatory impact For most 
people, objects such as trucks and bridge columns appear to be very hard, but to many radioactive material shipping 
packages these objects are relatively soft 

The method discussed in this paper for relating impacts with yielding targets to lower velocity impacts with 
unyielding targets helps to explain how the regulatory impact accident provides a high degree of safety to the public. 
This methodology is relatively simple to use, and can be applied to the "What if' scenarios brought up by interveners. 
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