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INTRODUCTION / 
Rigid, closed-cell, polyurethane foam is used in impact limiters in nuclear waste 
transport containers. During a hypothetical nuclear waste transport accident, the 
foam is expected to absorb a significant amount of impact energy by undergoing 
large inelastic volume reductions. Consequently, the crushing of polyurethane 
foams must be well characterized and accurately modeled to properly analyze a 
transport container accident. 

At the request of Sandia National Laboratories, a series of uniaxial, hydrostatic 
and triaxial compression tests on polyurethane foams were performed by the New 
Mexico Engineering Research Institute (NMERI). The combination of hydrostatic 
and triaxial tests was chosen to provide sufficient data to characterize both the 
volumetric and deviatoric behaviors of the foams and the coupling between the 
two responses. Typical results from the NMERI tests are included in this paper. 
A complete description of these tests can be found in Neilsen et al., 1987. 

Constitutive models that have been used in the past to model foam did not 
capture some important foam behaviors observed in the NMERI tests. Therefore, 
a new constitutive model for rigid, closed-cell, polyurethane foams was developed 
and implemented in two finite element codes. Development of the new model is 
discussed in this paper. Also, results from analyses with the new model and other 
constitutive models are presented to demonstrate differences between the various 
models. 

EXPERIMENTAL NMERI TESTS 

Six different General Plastics foams varying in density from 0.032 gm/ cm3 

(2 lb/ft3
) to 0.080 gm/cm3 (5 lb/ft3

) were characterized in the NMERI tests. 
Uniaxial, hydrostatic and tnaxial compression tests were performed. Results from 
a series of tests on 0.032 gm/cm3 foam are presented in Figure 1, where both 
volumetric and axial stress-axial strain responses are shown. These results indicate 
that the mean stress at which volumetric yielding occurs is dependent on the 
deviatoric stress. For example, the mean stress at yield under hydrostatic loading 
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is approximately 0.10 MPa, whereas the mean stress at yield is 0.06 MPa for 
uniaxial loading and 0.14 MPa for the triaxial test with a confining pressure of 
0.103 MPa. In the triaxial test with a confining pressure of 0.138 MPa, the foam 
actually yields twice, once at 0.10 MPa during the hydrostatic phase of the test 
and then again at 0.17 MPa. For this triaxial test, the data indicate that when the 
additional axial loads are finally applied, the foam has higher resistance to the 
axial loads than to continued hydrostatic loading. This type of behavior is not 
commonly observed and is an indication of the unusual coupling between the 
volumetric and shear responses of the foam. The unloading is not shown, but is 
generally along a slope parallel to the initial loading curve with some additional 
unloading strain at very low stress levels. 
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Figure 1: Results from the NMERl Tests on 0.032 gmfcm3 Foam- Triaxial 
Specimens were Hydrostatically Loaded to the Labeled Pressure, 
then Axial Load Alone was Increased. 

APPLICATION OF EXISTING CONSTITUTIVE MODELS TO 
POLYURETHANE FOAMS 

0.30 

The logic~ first step in the development of a constitutive model for polyurethane 
foams was to try to fit existing constitutive models to the test data. In this 
section, two multiaxial models which have been used in the past to model 
polyurethane foam behavior are evaluated with respect to the NMERl data. The 
two models considered in this section include: a conventional deviatoric plasticity 
model, and a cap model which combines volumetric plasticity with pressure 
dependent deviatoric plasticity. 

Conventional Deviatoric Plasticity Model 

Conventional deviatoric plasticity models were originally developed to model the 
response of metals but have been used to model polyurethane foam. The uniaxial 
yield strength of foam can be measured and extrapolated to multiaxial conditions 
using conventional deviatoric plasticity assumptions. One of the assumptions 
which must be evaluated, however, is that the model allows only elastic volume 
strains. The hydrostatic data in Figure 1 indicates that polyurethane foams 
undergo large plastic volume strains when subjected to loads of interest. Thus, 
conventional deviatoric plasticity models fail to capture the dominant energy 

80 



dissipation mechanism of polyurethane foams, their plastic volumetric behavior. 
Another assumption made with conventional plasticity models is that the 
volumetric and devia.toric responses are not coupled. If a. volumetric-devia.toric 
decomposition were valid, all of the volumetric responses in Fi~e 1 would be the 
same regardless of the load history. The curves in Figure 1 indicate that the 
volumetric response is clearly dependent on load history. Thus, conventional 
devia.toric plasticity models fail to capture two important features of polyurethane 
foam behavior: volumetric plasticity and volumetric-devia.toric coupling. 

Cap Model 

Cap models, multia.xial models which combine volumetric plasticity with pressure 
dependent devia.toric plasticity, were also investigated. A particular model of this 
type, developed for soil and concrete (Krieg, 1972), was examined in detail for its 
applicability to foam. In this model, the yield function is decomposed into 
devia.toric and volumetric parts. The volumetric yield function is independent of 
the deviatoric stresses, but the deviatoric portion of the yield function is 
dependent on the mean stress or pressure. The shape of the devia.toric yield 
surface is a. paraboloid of revolution about the mean stress axis. The 
volumetric,t,, and devia.toric, t., yield functions are given by the following 
equations 

t,=p-f('-y) 

t. = J2- (ao + a1p + a2p2) 

(1) 

(2) 

where p is the pressure or first invariant of the total stresses, ; is the engineering 
volume strain, f is a. function defining the volumetric behavior, J2 is the second 
invariant of the devia.toric stresses, and ao, a1 and a2 are material constants. This 
model captures the volumetric plasticity of polyurethane foam. However, in this 
model, the volumetric response is independent of the devia.toric response. This 
assumption is not valid for the polyurethane foam data presented in Figure 1; 
otherwise, all the test data would coincide in the volumetric response plots. 
Neither conventional devia.toric plasticity models, nor cap models are appropriate 
for polyurethane foams. Therefore, a new constitutive model was developed. 

MODEL DEVELOPMENT 

The first step in the development of a new constitutive model for polyurethane 
foams was to examine the individual components of the foam structure. Each of 
the foams used in the NMERI tests was a. closed cell foam with air inside the cells. 
Therefore, each foam consisted of two structural components: (1) the polymer 
structure or skeleton and (2) the air inside the foam. In applicattons where the air 
cannot escape from the skeleton during loading, the air can carry a substantial 
part of the load. In all of the NMERI tests except the uniaxial tests, the samples 
were jacketed and air could not escape. Thus, a model which considered the 
contribution of the air to the overall structural response of the foams was 
appropriate for the foam behavior exhibited in the NMERI tests. 

Total foam response can be decomposed into the response of the skeleton and the 
response of the air in the following manner. Since the air cannot support shear 
stresses, the air contribution is completely volumetric. For convenience, the 
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skeleton is assumed to occupy the same space as the foam. This implies that the 
skeleton and foam strain components are equal. Also, the foam stress components, 
ui;, are given by the following equation 

.. 

(3) 

where utf are the skeleton stress components and uaif" 5i; represents the air 
contribution to the normal stress components. To better understand this equation, 
consider a hydrostatic compression test in which the foam sample is jacketed and 
the air is not allowed to escape. H the skeleton was structured such that it could 
not carry any load then the external pressure applied to the foam would equal the 
internal air pressure. In other words, the foam stress components would equal the 
air contribution. This foam would not be able to resist any deviatoric loading. In 
most foams, however, the skeleton is structured such that it can carry load and 
the contribution of the skeleton must be added to the air contribution to 
determine how much load the foam can carry. 

The ideal gas law was used to derive the following expression for the air 
contribution, 

uaif" = Pob + (1- </>)(1- T1/To)] 
(-y + 1 - </>) 

(4) 

where p0 is the absolute internal air pressure when no load is applied to the foam, 
</> is the volume fraction of solid material, "Y is the engineering volume strain, T0 is 
the initial absolute temperature, and T1 is the current absolute temperature. For 
isothermal conditions, the air contribution is equal to zero when the foam volume 
strain is equal to zero. For applications in which the air can escape from the foam, 
the load carried by the air can be neglected by setting p0 equal to zero. 

The skeleton response can now be determined from the NMERI tests. Since the 
foam and the skeleton occupy the same volume, the foam and skeleton strains are 
the same. Also, the skeleton stress components are determined by subtracting the 
expression given by Equation 4 for the stress carried by the air from the foam 
normal stress components given in Figure 1. The skeleton responses found in this 
way for 0.032 gm/cm3 foam are shown in Figure 2. 

The skeleton responses shown in Figure 2 indicate that for hydrostatic loading the 
yield stress can be expressed as a function of the volume strain, "Y. H the loading is 
deviatoric, the axial yield stress appears to be equal to the axial yield stress for 
hydrostatic loading plus a constant. The NMERJ test results also indicate that 
the skeleton response in a principal stress direction is not affected by the other 

. principal skeleton stresses. Thus, the yield stress in each principal stress direction 
can be expressed as 

g = AIII'I + B + 0"'( (5) 

where I I' is the second invariant of the deviatoric strains, I * I is the Heaviside 
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Figure 2: Skeleton Response for 0.032 gm/cm3 Foam- Triaxial Specimens 
were Hydrostatically Loaded to the Labeled Pressure, then Axial 
Load Alone was Increased. 

0.30 

step function, '1 is the volume strain or first invariant of the foam strain, and A, 
B, and Care material constants. B is the yield strength of the skeleton for purely 
hydrostatic loading, and C defines the skeleton's volumetric response after yielding 
for purely hydrostatic loading. Material constant A is equal to the difference 
between the axial yield strength for hydrostatic loading and the axial yield 
strength for devia.toric loading. The first term in Equation 5 is only active when 
the deformation is devia.toric. The principal skeleton stresses must be less than or 
equal to the yield function, g. H the principal skeleton stresses are less than g, the 
behavior is elastic. H the principal skeleton stresses are equal tog, the behavior 
ma.y be plastic. Results from one hydrostatic test and one triaxial or uniaxial test 
are needed to define the material constants for this new model. Material constants 
for two different foams are given in Table 1. 

Table 1: Mechanical Properties 

. 5 
0.080 20.8 0.339 0.419 -0.216 0.090 

The next step in the development of the new constitutive model was its 
implementation in finite element computer codes. The model was incorporated in 
SANCHO (Stone et al., 1985), a quasista.tic dynamic relaxation code, and in 
PRONTO (Taylor and Flanagan, 1986), a. transient dynamics code. The 
implementation in both codes was straightforward. 

The last step in the development of this new constitutive model was to verify that 
this model accurately represented the 'polyurethane foam behavior. To verify the 
model, a. series of analyses was completed using the new constitutive model in 
SANCHO and PRONTO. This series of analyses was completed using an 
axisymmetric, one element model of a. NMERl test sample. Boundary conditions 
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Figure 3: Comparison of Analytic and Experimental Results - Hydrostatic and 
Triaxial Tests on 0.032 gmfcm3 Foam. 

on the model were varied to represent the various NMERI tests. Experimental 
foam behavior and constitutive model behavior from hydrostatic and triaxial tests 
on 0.032 gm/cm3 foam are shown in Figure 3. The new constitutive model 
accurately represented the foa.m. behavior observed in the NMERI tests. 

SOLUTION OF AN IMPACT PROBLEM USING THE NEW MODEL 

The new foa.m. constitutive model and PRONTO were used to analyze the impact 
of an infinitely long steel cylinder surrounded by a foam layer with a thin 
aluminum shell. This problem was chosen to demonstrate the capabilities of the 
model for handling complex stress states. Results from this analysis were 
compared with results obtained using a conventional deviatoric plasticity model 
and a cap model to demonstrate the effects of using the various models for the 
foa.m. material. The two dimensional, plane strain finite element model shown in 
Figure 4 was used in these analyses. The cylinder was dropped onto a rigid surface 
at an initial velocity of 13.4 meters per second, and the resulting deformations and 
accelerations were computed. The foam layer was assumed to be 0.080 gmfcm3 

foa.m. and was modeled with the three different constitutive models discussed 
above. 

Displaced shapes ·of the finite element model at ma.xim.um crush-up are shown in 
Figure 5. Plots of displacement and acceleration of the steel cylinder as a function 
of time are shown in Figure 6. Peak acceleration predictions obtained using the 
new constitutive model are between predictions obtained using the conventional 
deviatoric plasticity model and the cap model. The conventional deviatoric 
plasticity model does not allow for any volumetric plasticity and is stiffer than the 
other two models. The cap model assumes the volumetric response is not 
dependent on deviatoric loading and is softer than the other two models. 
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Figure 4: Finite Element Model. 
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Figure 5: Displaced Shape of Finite Element Model. 
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Figure 6: Displacement a.nd Acceleration of Steel Cylinder. 
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CONCLUSIONS AND FUTURE WORK 

The behavior of rigid, closed-cell, polyurethane foam was experimentally 
investigated. These experiments indicated that these foams undergo large plastic 
volume strains when subjected to sufficient load and that the deviatoric and 
volumetric behaviors for these foams are coupled. 

A conventional deviatoric plasticity model and a cap model did not capture foam 
behaviors observed in the NMERI experiments. Thus, a new constitutive model 
for rigid, closed-cell, polyurethane foams was developed. This constitutive model 
was implemented in two finite element codes, SANCHO and PRONTO. A typical 
problem was analyzed using this new constitutive model and other constitutive 
models to demonstrate differences between the various models. 

Because the experimental NMERI tests were all static tests, there was no way to 
determine if rate effects were important; therefore, no rate effects were included in 
the new constitutive model. In the future, dynamic tests should be completed to 
determine if rate effects are important. The new constitutive model could then be 
modified, if necessary, to include any important rate effects. Temperature effects 
were also not investigated in the NMERI tests. Temperature effects were included 
in the new constitutive model by assuming that the air behaves as an ideal gas 
and that temperature changes have no effect on the polymer skeleton. 
Experimental tests should be completed to investigate the effects of temperature 
variations on the skeleton response. Once the new constitutive model has been 
modified to include any important rate or temperature effe~ts, it could then he 
used with confidence to analyze dynamic events. Future comparisons between 
experimental results and analyses with this constitutive model would further 
increase confidence in its accuracy. 
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