Identifying Roadway Sections With "Critical" Large Truck Accident Rates*

J.D. Brogan¹ and J.W. Cashwell²

¹Sandia National Laboratories^{**}, Albuquerque, New Mexico (on sabbatical leave from the University of New Mexico)

²Sandia National Laboratories, Albuquerque, New Mexico, United States of America

INTRODUCTION

A considerable amount of transportation-related data exists at the national and state levels which may be of assistance in the evaluation and modification of routing and risk assessment models currently utilized by the Department of Energy's Transportation Technology Center at Sandia National Laboratories. This information, including the Federally-supported Fatal Accident Reporting System - FARS (U.S. Department of Transportation 1984), National Accident Sampling System - NASS (U.S. Department of Transportation 1987), and Highway Performance Monitoring System - HPMS (Kittell 1984), can be used to evaluate both existing and proposed model applications as well as to formulate strategies for future model and associated data base improvements.

Current efforts at the national level appear to be focusing on attempts to create a National Safety Information System. This system would merge existing information relating to highway accident, highway inventory (such as geometric data), and traffic volume data which is currently maintained in separate computer files. Any model applications involving accident rates would thus have to access this combined file since such calculations require roadway section length and volume information as well as data on accident occurrences. State traffic record systems also appear to be moving toward this consolidated approach, although routine use of such special-purpose files appears to be a few years away (Wolff 1989).

Existing truck accident analyses at the state-wide level, then, must rely on highway accident and roadway inventory data bases residing in separate, often incompatible, computer files. The purpose of this paper is to present an overview of efforts currently underway to analyze roadway geometric data and accident rate information from a variety of sources to develop a relationship between these data and accident probability indicators for specific roadway segments, and to develop a computerized methodology to determine parameters of interest. This methodology will then be included on the TRANSNET system of models and data bases where the accident probability value may be used to perform analyses in codes such as StateGEN/StateNET or RADTRAN.

A technique for merging accident record and roadway inventory files and for utilizing the combined data set to identify sections of a rural Interstate highway system that have unusually high accident rates involving large truck vehicles is presented here as a prototype of the accident probability methodology. This statistical technique, known as the rate/quality control method, involves calculating a "critical rate" for each roadway section. This critical rate is a function of the traffic volume on the section, the overall systemwide accident rate, and a desired level of statistical significance. Observed accident rates on each section are then compared to the section's critical

*This work performed at Sandia National Laboratories, Albuquerque, New Mexico, supported by the United States Department of Energy under Contract No. DE-AC04-76DP00789.

**A United States Department of Energy Facility

rate and sections are ranked according to their "criticality," that is, the numerical difference between their observed and "critical" rates.

With ongoing data collection efforts and concomitant improvements in data quality, particularly involving large truck accident rates, the technique may ultimately have application to the formulation of routing decisions regarding the transport of radioactive or other hazardous materials and in the evaluation of routing alternatives.

Subsequent sections of the paper describe in detail the rate/quality control technique and its application to a state-wide, rural Interstate highway network, develop the computer code for merging the accident and inventory files, and describe the selection of critical roadway sections. Conclusions and recommendations for further work follow.

THE RATE/QUALITY CONTROL METHOD

The rate/quality control method of traffic accident analysis has been borrowed from comparable techniques employed in industrial quality control (Zegeer 1982). The procedure is statisticallybased and defines those spots or sections where the observed accident rates are higher than would be expected due to normal variations in the data. The technique requires both the observed accident rate for the section and a calculated critical rate. The critical rate is determined by first calculating an average accident rate (RA) for all sections of roadway (including those containing no accidents) for the particular highway system under consideration. This calculation is as follows:

 $RA = (A \times 1,000,000) / (ADT \times L \times N)$

where:

RA = average accident rate on the section per million vehicle-miles of travel, A = total number of accidents on the section for the time period in question, ADT = average daily traffic on the section,

L = section length in miles, and

N = number of days in the time period.

A statistical test, based on the commonly accepted assumption that accidents follow a Poisson distribution, is necessary to calculate each section's critical rate. A level of significance of 0.05 is commonly used (the analyst can be 95% confident that the section accident rate, based on the number of accidents and some measure of vehicle-miles of travel, would not exceed the critical rate). For a significance level of 0.05, the value of the statistical factor (K) is 1.645. Values of the factor for other levels of significance may be found in any standard statistical reference. Using a larger value, for example, will both decrease the number of critical locations identified by the technique and increase the number of segments which are not identified as critical. The procedure also requires an estimate of the amount of travel on each individual section; this parameter is usually expressed in millions of vehicle-miles.

Given the above information, the critical rate may be calculated as:

$$RC = RA + K_{\sqrt{RA/M}} + 0.5/M$$

where:

RC = the calculated critical rate on the section (per million vehicle- miles), RA = the average accident rate for all sections of roadway, K = the statistical factor for a given level of significance, and M = travel on the section in millions of vehicle-miles (mvm). The equation shows that the critical accident rate for a section of roadway is inversely related to the amount of travel on the roadway. This relationship is shown in Figure 1, which compares the critical accident rate for a one mile section of roadway with the ADT on that section. The horizontal axis in the figure may also be interpreted as the daily vehicle-miles of travel on a section with a length of other than one mile. Observed accident rates above the curvilinear function shown in the figure are critical and thus deserve further study. A ranking of all sections by the difference between the observed rate on a section and its critical rate provides a means for prioritizing such sections.

A simple example may be used to demonstrate the approach. Assume that a 3.0 mile section of rural Interstate roadway has an ADT of 1,000 vehicles per day. Assuming constant volume, the total vehicle-miles of travel during a typical three year analysis period is:

M = (1,000 vpd x 365 days/yr x 3 years x 3.0 miles) / 1,000,000 = 3.285 mvm

If the average rural Interstate system accident rate is 0.187 large truck accidents per million vehicle-miles, and the chosen level of statistical significance is 0.05, the critical rate for the section is calculated as:

 $RC = 0.187 + 1.645 \sqrt{0.187/3.285} + 0.5/3.285 = 0.731$ large truck acc./mvm

Thus, for any section with this amount of travel, there are 95 chances in 100 that, if the observed accident rate exceeds the critical rate, the section may require further study. If a total of 6 large truck accidents occurred on this section during a three year period, for instance, the actual accident rate (RS) is:

RS = (6 accidents x 1,000,000)/3,285,000 = 1.83 accidents/mvm

The actual rate (1.83 accidents/mvm) clearly exceeds the critical rate (0.731 accidents/mvm). The difference between the actual and the critical rates (1.099 accidents/mvm) is the criticality of the section; because the criticality is positive, the site is a logical candidate for further study.

APPLYING THE RATE/QUALITY CONTROL TECHNIQUE

The development of a list of critical large truck accident sections on New Mexico's rural (nonurban) Interstate system is used as an example of the approach and may be viewed as consisting of a number of distinct steps:

1. Calculate systemwide accident rates for some period of time (3 years minimum) for New Mexico's rural Interstate system,

2. Define what constitutes an individual roadway section and calculate the total vehicle-miles of travel on that section,

 Select a level of significance and calculate the critical accident rate for each defined individual section,

 Calculate an accident rate on each individual section, compare it to the critical rate for that section, and rank sections by their criticality.

The interrelationships among these steps are illustrated in Figure 2 which indicates that the procedure for identifying critical sections first requires the examination of two computerized files --

Figure 1. Critical Accident Rate vs Volume

TABLE 1

CRITICAL TRUCK ACCIDENT SECTIONS ON NM INTERSTATES ARRANGED BY DECREASING CRITICALITY

......

256 CDL FAX 455.899 457.060 7 4856 0.9872 0.3874 CALL 401 MCK INLEY 25.002 33.767 33 4554 0.4962 0.1912 X 401 MCK INLEY 26.002 275.0167 23 357078 0.5523 0.2242 X 401 MCK INLEY 26.007 35.7677 23 37078 0.4269 0.2003 X 405 GUADALUPE 25.767 37.1797 5.3464 0.5858 0.3642 X X 405 GUADALUPE 25.7500 232.314 4107769 0.3432 0.1529 X 4061 MCKINLEY 27.0662 232.314 43549 0.34320 0.1529 X 405 GUADALUPE 27.023 27.615 4 05773 0.33860 0.1570 X 405 GUADALUPE 20.000 47.0622 36 45310 0.2601 0.2723 X 405 GUAD	RUUTE	COUNTY	FROM	TO	NACC	TRAVEL	RATE	CR RATE	
401 MCKINLEY 30.503 33.727 31 4556 0.9872 0.3954 8 401 MCKINLEY 26.197 275.014 9 1162 0.5523 0.2842 8 401 MCKINLEY 26.197 30.503 38 60510 0.4803 0.2842 8 401 MCKINLEY 36.767 30.777 23 57078 0.4209 0.2003 8 401 MCKINLEY 26.197 37.197 5 5846 0.5852 0.1629 8 401 MCKINLEY 247.500 236.436 54 107769 0.3432 0.1629 8 401 MCKINLEY 247.500 236.436 54 107769 0.3432 0.1676 8 403 GUADALUPE 277.023 277.615 4 5577 0.3363 0.5051 0.3723 8 405 GUADALUPE 297.627 303.317 16 3516 0.2601 0.1676 8 405 GUADALUPE 267.900 272.997 19 49515 0.260	256	COLFAX	455.899	457.060					CATILCAL
405 GUADALUPE 275.022 275.024 93. 93.544 6.4962 0.1912 401 MCKINLEY 26.197 30.503 38 60510 0.4301 0.1803 401 MCKINLEY 26.197 30.7078 23 37078 0.4301 0.1803 405 GUADALUPE 36.767 23 37078 0.4302 0.1629 0.8649 401 MCKINLEY 36.767 23 37078 0.4269 0.2003 0.1629 0.1643 401 MCKINLEY 26.500 275.114 32 92569 0.5103 0.1629 0.1669 401 MCKINLEY 0.000 4.166 20 40773 0.3340 0.1952 0.1669 255 SAM MIGUEL 300.006 322.118 22 9337 0.3360 0.1952 0.3723 401 MCKINLEY 40.000 47.062 36 3116 0.2601 0.1663 0.1960 255 SAM MIGUEL 300.006 322.118 22 35146 0.3116 0.2029 0.1664	401	MCKINLEY	30.503	\$\$ 747		9856	0.9872	0.3954	
401 MCKINLEY 26:137 35:363 37 11162 0.5523 0.2262 401 MCKINLEY 36:707 23 37078 0.4269 0.2003 401 MCKINLEY 36:707 23 37078 0.4269 0.2003 401 MCKINLEY 36:767 23 37078 0.4269 0.2003 401 MCKINLEY 243:500 236:446 56 107769 0.3632 0.1629 401 MCKINLEY 243:500 255:314 43 92265 0.3193 0.1629 405 GUADALUPE 277:023 277:615 40 90773 0.3360 0.1629 405 GUADALUPE 299:627 303:317 22 49383 0.30511 0.1670 405 GUADALUPE 299:677 0.9355 0.2203 0.1870 0.3060 405 GUADALUPE 267:900 272:977 19 45310 0.2203 0.1873 405 GUADALUPE 26:876 218:064 43 118151 0.22035 0.1606 <t< td=""><td>405</td><td>GUADALUPE</td><td>273.602</td><td>275 014</td><td>33</td><td>95559</td><td>0.4962</td><td>0.1912</td><td>-</td></t<>	405	GUADALUPE	273.602	275 014	33	95559	0.4962	0.1912	-
401 MCKINLEY 36.000 37.777 25 60510 0.4801 0.1803 405 GUADALUPE 25.767 37.777 5 3846 0.8629 3609 405 GUADALUPE 25.767 37.779 5 3846 0.8632 0.1629 # 406 MCKINLEY 27.662 350.183 22 41509 0.3632 0.1629 # 406 MCKINLEY 0.000 4.166 20 40775 0.3560 0.1670 # 405 GUADALUPE 277.023 277.615 4 5777 0.3620 0.1600 # 37.627 0.3560 0.1679 # 405 GUADALUPE 270.023 277.623 35164 0.35160 0.3620 # # # 577 0.46201 0.1663 # <td>401</td> <td>MCKINLEY</td> <td>26.197</td> <td>30 503</td> <td></td> <td>11162</td> <td>0.5523</td> <td>0.2842</td> <td></td>	401	MCKINLEY	26.197	30 503		11162	0.5523	0.2842	
401 MCKINLEY 36,727 37,379 37,078 0.4249 0.2003 401 MCKINLEY 243,500 254,436 54 107769 0.3632 0.1629 # 401 MCKINLEY 243,500 254,436 54 107769 0.3633 0.1952 # 401 MCKINLEY 222,665 232,314 43 92245 0.3633 0.1952 # 403 MCKINLEY 0.000 632,2118 22 49383 0.3340 0.1960 # 405 GUADALUPE 299,627 303,317 26 93835 0.2833 0.1960 # 405 GUADALUPE 266,700 272,997 16 49383 0.2803 0.1968 # 405 GUADALUPE 266,700 272,997 16 49385 0.2803 0.1908 # 402 LUNA 85,509 101,950 114814 0.2355 0.1555 # 102 DOLA A116,507 117,566 14 35214 0.2355 0.15664 #	401	MCKINLEY	34.000	14 747	20	60510	0.4301	0.1803	- C - C - C - C - C - C - C - C - C - C
405 GUADALUPE 237.435 3 3846 0.5858 0.3642 1629 1649 406 TORRANCE 222.665 232.314 43 92255 0.3333 0.1429 1670 401 MCKINLEY 0.000 4.166 20 40773 0.3340 0.1952 1670 405 GUADALUPE 277.023 277.415 40773 0.3340 0.1960 1879 405 GUADALUPE 299.627 303.317 16 35166 0.5051 0.1879 187 401 MCKINLEY 40.000 47.662 364310 0.2601 0.1663 1879 401 MCKINLEY 40.000 47.062 36 98410 0.2601 0.1663 18 402 CUMALUPE 206.876 218.064 3 118151 0.2603 0.1908 18 402 CUMA 114.898 117.366 14 148314 0.23355 0.1555 1908 402 DUNA ANA 134.637 135.110 3 38886 0.23355 0.15649	401	MCKINLEY	36.767	37 100	23	37078	0.4249	0.2003	2
401 MCKINLEY -47.002 200.738 32 107769 0.3632 0.1626 # 401 MCKINLEY 222.665 232.314 43 92245 0.3193 0.1670 # 405 GUADALUPE 277.023 277.615 4 92773 0.3360 0.1952 # 405 GUADALUPE 277.023 277.615 4 9577 0.4912 0.5723 # 405 GUADALUPE 299.627 303.317 16 35166 0.5116 0.2029 # 405 GUADALUPE 299.627 303.317 16 35166 0.5116 0.2029 # 405 GUADALUPE 290.027.2997 19 45935 0.2401 0.1663 # 402 CIBOLA 116.898 117.366 31 148131 0.24933 0.1606 # 402 CIBOLA 116.898 117.366 31 148131 0.24933 0.1606 # 402 CIBOLA 116.898 117.366 34 0.24983 0.1908 #	405	GUADALUPE	243.500	256 474		5846	0.5858	0.3669	-
406 TORRANCE 222.665 232.334 43 92245 0.5363 0.1952 # 401 MCKINLEY 0.000 4.166 20 40773 0.3360 0.1670 # 235 SAN MIGUEL 309.006 322.118 22 4577 0.4912 0.3723 # 401 MCKINLEY 40.000 47.062 36 94810 0.2601 0.1663 # 402 GUADALUPE 20.627 300.317 16 45935 0.2833 0.1906 # 404 TORRANCE 226.876 218.064 43 118151 0.2601 0.1606 # 402 CIDOLA 85.500 101.950 51 148314 0.2355 0.1606 # 402 CIDOLA 85.500 101.950 51 148314 0.2355 0.1606 # 402 CIDOLA 85.500 101.950 51 148314 0.22047 # 402 CIDOLA 85.500 101.950 51 1017486 0.22047 # <tr< td=""><td>401</td><td>MCKINLEY</td><td>67 062</td><td>630.430</td><td>29</td><td>107769</td><td>0.3432</td><td>0.1629</td><td></td></tr<>	401	MCKINLEY	67 062	630.430	29	107769	0.3432	0.1629	
401 MCKINLEY 2.32.316 2.32.316 2.32.45 0.3193 0.1670 # 255 GUADALUPE 277.023 277.615 4 5577 0.3360 0.1960 # 405 GUADALUPE 299.627 303.317 16 49333 0.3051 0.1879 # 405 GUADALUPE 299.627 303.317 16 49333 0.3051 0.1663 # 405 GUADALUPE 299.627 303.317 16 49333 0.2601 0.1663 # 405 GUADALUPE 267.900 272.997 19 45935 0.2833 0.1606 # 402 LUNA 85.509 101.950 118.834 0.2395 0.1606 # 402 CIDOLA 114.898 117.566 14 168314 0.2355 0.1664 # 402 DONA ANA 130.4207 # 35110 0.26222 0.1922 # 403 GUADALUPE 256.436 267.900 35 101788 0.26250 0.12626 # <	404	TORRANCE	222 665	212 114	22	41509	0.3630	0.1952	2
405 GUADALUPE 277.023 277.615 40773 0.3360 0.1960 255 SAN MIGUEL 309.006 322.118 22 49383 0.4912 0.3723 401 MCKINLEY 40.000 67.062 36 94810 0.2029 # 405 GUADALUPE 267.900 272.997 19 459353 0.2833 0.1663 # 406 TORRANCE 206.876 218.064 459355 0.2833 0.1606 # 402 LUNA 85.509 101.950 51 148314 0.22633 0.1606 # 402 DUNA ANA 134.637 135.110 3 33888 0.22835 0.1606 # 402 DUNA ANA 134.637 135.110 3 4100 0.5011 0.4269 # 404 TORRANCE 218.064 222.665 17 64413 0.22355 0.1644 # 404 TORRANCE 218.054 26.197 14 35214 0.22622 0.1922 # 401 MCKINLEY	401	MCKINLEY	0 000	222.319	93	92245	0.3193	0.1670	2 2
255 SAN MIGUEL 309.0206 322.118 22 49383 0.4912 0.3723 # 401 OUADALUPE 299.627 305.317 16 35166 0.3051 0.1879 # 403 GUADALUPE 297.000 272.997 19 94810 0.2601 0.1663 # 404 TORRANCE 266.876 218.064 43 118151 0.24933 0.1806 # 102 LUNA 85.509 101.950 51 1148151 0.22355 0.1555 # 102 CIBOLA 115.667 125.056 35 101788 0.22355 0.1646 # 102 DONA ANA 114.898 117.366 14 33888 0.22355 0.1646 # 102 DONA ANA 115.667 122.665 35 101788 0.26225 0.1922 # 405 GUADALUPE 236.647 222.665 35 101788 0.22355 0.1646 # 405 DONA ANA 10.950 123.933 62 201142 0.22	405	GUADALUPE	277 028	27.100	20	40773	0.3360	0.1960	2
405 OUADALUPE 299.627 322.117 12 49383 0.5051 0.1879 # 401 MCKINLEY 40.000 47.062 36 35166 0.3116 0.2029 # 404 TORRANCE 206.876 218.064 43 118151 0.26213 0.1863 # 404 TORRANCE 206.876 218.064 43 118151 0.22093 0.1806 # 402 CIBOLA 114.879 117.366 14 33888 0.2355 0.1606 # 402 CIBOLA 114.879 117.366 14 33888 0.2355 0.1606 # 402 DONA ANA 135.637 135.110 3 4100 0.5011 0.4269 # 403 GUADALUPE 23.054 26.1977 14 35214 0.27235 0.1922 # 102 DONA ANA 101.950 123.935 62 201142 0.27235 0.2028 # 102 DONA ANA 101.307 14 35210 0.2174 0.1788	255	SAN MIGUEL	100 004	2//.015		5577	0.6912	0 3723	
401 MCKINLEY 40.000 47.062 36 98810 0.3116 0.2029 # 405 GUADALUPE 267.900 272.997 19 98810 0.2601 0.1663 # 102 LUNA 85.509 101.950 51 148151 0.2493 0.1606 # 102 LUNA 85.509 101.950 51 148151 0.2493 0.1606 # 102 CIBOLA 114.898 117.366 14 33888 0.2355 0.1606 # 403 GUADALUPE 256.436 267.900 35 101788 0.2355 0.1644 # 403 GUADALUPE 256.436 267.900 35 101788 0.22355 0.1644 # 404 TORRANCE 218.064 222.6655 17 44413 0.22355 0.1644 # 102 DONA ANA 101.950 123.933 62 201142 0.2111 1495 # 102 DONA ANA 101.950 123.933 62 201142 0.21142	405	GUADALUPE	298 427	322.118	22	49383	0.3051	0 1879	
405 GUADALUPE 267.000 272.997 19 45935 0.2601 0.1663 H 404 TORRANCE 206.876 218.064 43 118151 0.2493 0.1606 H 402 CIBOLA 116.898 101.950 51 148314 0.2493 0.1606 H 402 CIBOLA 116.898 117.566 14 33888 0.2355 0.1555 H 405 GUADALUPE 256.436 267.900 35 101788 0.2047 H 404 TORRANCE 218.064 222.6655 17 64413 0.2355 0.1644 H 404 TORRANCE 218.064 222.665 17 44613 0.2255 0.1644 H 404 TORRANCE 218.054 266.197 14 35214 0.2723 0.2028 H 404 GUADALUPE 232.314 23.933 62 201142 0.2111 0.1644 H 401 MCKINLEY 32.054 26.197 14 35215 0.2087 0.2078	401	MCKINLEY	60 000	303.317	16	35166	0.3116	0 2029	
404 TORRANCE 206.700 2/2.997 19 45955 0.2833 0.1908 102 102 LUMA 85.509 101.950 51 148151 0.24933 0.1606 14 402 CIBOLA 114.898 117.366 14 13814 0.2355 0.1555 102 DONA ANA 134.698 117.366 14 33868 0.2830 0.2047 405 GUADALUPE 256.436 267.900 35 101788 0.2622 0.1922 404 TORRANCE 218.064 222.665 17 44413 0.2622 0.1922 123 404 TORRANCE 218.064 222.665 17 44413 0.2622 0.1922 123 102 DONA ANA 101.950 123.933 62 201142 0.21218 0.2028 149 102 DONA ANA 101.950 123.933 62 201142 0.2174 0.2676 1495 104 GUADALUPE 232.314 239.395 20 63007 0.2187 0.1656 13315 <td>405</td> <td>GUADALUPE</td> <td>247 800</td> <td>47.00Z</td> <td>36</td> <td>94810</td> <td>0.2601</td> <td>0 1443</td> <td></td>	405	GUADALUPE	247 800	47.00Z	36	94810	0.2601	0 1443	
102 LUNA 85.509 101.950 51 148151 0.2293 0.1606 402 CIBOLA 114.898 117.366 14 33888 0.2335 0.1555 102 DONA ANA 134.637 135.110 3 4100 0.5011 0.4269 # 405 GUADALUPE 256.436 267.900 35 101788 0.2355 0.1646 404 TORRANCE 218.064 222.6655 17 44413 0.2022 # 402 DONA ANA 101.950 123.933 62 201142 0.2111 0.1646 404 TORRANCE 218.064 222.665 17 44413 0.22723 0.2028 # 102 DONA ANA 101.950 123.933 62 201142 0.2111 0.16495 256 COLFAX 416.367 420.636 6 13315 0.32028 # 101 MIDALUPE 232.314 239.395 20 63007 0.2174 0.1788 # 256 MORA 366.100 389.4	404	TORRANCE	206 876	2/2.997	19	45935	0.2833	0 1000	
402 CIBOLA 114.898 101.950 51 148314 0.2355 0.1555 H 102 DDNA ANA 136.637 135.110 3 4100 0.5011 0.4269 H 405 GUADALUPE 256.436 267.900 35 101788 0.2355 0.1644 H 404 TORRANCE 218.064 222.665 17 46413 0.2222 0.1922 H 404 TORRANCE 218.064 222.665 17 46413 0.2223 0.16444 H 401 MCKINLEY 23.054 26.197 14 35214 0.2723 0.2028 H 256 COLFAX 416.367 420.636 6 13315 0.3087 0.2174 0.1788 H 404 GUADALUPE 232.314 239.395 20 63007 0.2174 0.1788 H 256 MORA 6.176 11.300 14 41520 0.2187 0.1954 H 256 MORA 322.000 329.221 21 681357 0.2187<	102	LUNA	25 500	218.069	43	118151	0.2493	0 1606	
102 DOMA ANA 134.637 137.366 14 33888 0.2030 0.2067 M 405 GUADALUPE 256.436 267.900 35 101788 0.2035 0.2067 M 404 TORRANCE 218.064 222.665 17 44413 0.2022 0.4269 M 401 MCKINLEY 23.054 22.665 17 44413 0.2022 0.1644 M 102 DDNA ANA 101.950 123.933 62 201142 0.2028 M 104 GUADALUPE 232.314 239.395 20 63007 0.2174 0.1788 M 101 HIDALGO 6.176 11.300 14 41320 0.2334 0.1788 M 256 MORA 366.100 389.496 18 56367 0.2187 0.1788 M 401 MCKINLEY 37.199 49001 13 38150 0.2111 0.1762 M 102 U	402	CIBOLA	116 809	101.950	51	148314	0.2355	0 1555	
405 GUADALUPE 256.436 267.900 35 101788 0.3011 0.4269 404 TORRANCE 218.064 222.665 17 44413 0.2622 0.1922 102 DONA AHA 101.950 123.933 62 201142 0.2028 8 256 COLFAX 416.367 420.636 6 13315 0.3087 0.2028 8 101 MIDALUPE 232.314 239.395 20 63007 0.2174 0.1788 8 101 MIDALUPE 232.314 239.395 20 63007 0.2174 0.1788 8 101 MIDALOPE 232.314 239.395 20 63007 0.2174 0.1788 8 101 MIDALOPE 232.314 239.395 20 63007 0.2174 0.1788 8 256 MORA 366.100 389.496 18 56367 0.2187 0.1828 8 401 MCKINLEY 322.000 329.221 21 68135 0.2111 0.1762 8	102	DONA ANA	136 677	117.366	14	33888	0.2830	0 2067	
404 TORRANCE 238.436 267.900 35 101788 0.2555 0.1644 401 MCKINLEY 23.054 26.197 14 35214 0.2222 0.1922 x 102 DONA ANA 101.950 123.933 62 201142 0.2111 0.1644 x 256 COLFAX 416.367 420.636 6 13315 0.3087 0.2676 x 404 GUADALUPE 232.314 239.395 20 63007 0.2174 0.1788 x 256 MORA 366.100 389.496 18 56367 0.22321 0.1954 x 256 MORA 366.100 389.496 18 56367 0.2187 0.1828 x 256 MORA 366.470 81.224 28 990455 0.1651 x 401 MCKINLEY 37.199 40.000 13 38150 0.2334 0.1990 x 102 LUNA 68.470 81.224 28 990455 0.1651 x 101 <	405	GUADAL UPF	134.03/	135.110	3	4100	0.5011	0.2047	×
401 MCKINLEY 218.054 222.665 17 46413 0.2622 0.1922 N 102 DDNA ANA 101.950 123.933 62 201142 0.2111 0.1025 N 256 C0LFAX 416.367 420.636 6 13315 0.2028 N 404 GUADALUPE 232.314 239.395 20 63007 0.2174 0.1788 N 101 HIDALGO 6.176 11.300 14 41320 0.2174 0.1788 N 256 MORA 366.100 389.496 18 56367 0.2187 0.1828 N 401 MCKINLEY 37.199 40.000 13 38150 0.2334 0.1990 N 102 UNA 68.470 81.226 28 99045 0.1936 0.1651 N 402 CIBOLA 126.824 131.200 17 56625 0.2056 0.1936 0.1651 N 402 CIBOLA 126.824 131.200 17 56625 0.2056 0.1827	404	TORRANCE	230.436	267.900	35	101788	0.2155	0.4209	×
102 DONA ANA 101950 26.197 14 35214 0.2723 0.2028 N 256 COLFAX 616.367 123.953 62 201142 0.2111 0.1495 N 404 GUADALUPE 232.314 239.395 20 63007 0.2028 N 101 MIDALOD 6.176 11.300 14 61507 0.2111 0.1788 N 256 MORA 366.100 389.496 14 41520 0.2221 0.1956 N 256 MORA 366.100 389.496 18 56367 0.2121 0.1956 N 256 MORA 366.100 389.496 18 56367 0.2137 0.1828 N 401 MCKINLEY 37.199 29.0000 13 38150 0.2334 0.1990 N 102 LUNA 68.470 81.224 28 99045 0.1956 0.1651 N 102 LUNA 68.470 81.224 28 99045 0.1956 0.1651 N <tr< td=""><td>401</td><td>MCKINIEY</td><td>210.004</td><td>222.665</td><td>17</td><td>44413</td><td>0.2622</td><td>0.1044</td><td>×</td></tr<>	401	MCKINIEY	210.004	222.665	17	44413	0.2622	0.1044	×
256 COLFAX 101.950 123.933 62 201142 0.2028 N 404 GUADALUPE 232.314 239.395 20 63007 0.2174 0.1495 N 256 MORA 366.100 389.496 18 563007 0.2174 0.1788 N 256 MORA 366.100 389.496 18 56367 0.2187 0.1828 N 406 QUAY 322.000 329.221 21 68155 0.2187 0.1828 N 101 MCKINLEY 37.199 40.000 13 38150 0.2334 0.1990 N 102 LUNA 68.470 81.224 28 99045 0.1936 0.1651 N 101 GRANT 24.565 69.970 47 183846 0.1751 0.1511 N 405 GUADALUPE 285.182 291.229 18 60814 0.2027 0.1827 N 404 TORRANCE	102	DONA ANA	23.059	26.197	14	35214	0 2723	0.1922	X
404 GUADALUPE 232.314 239.395 20 43315 0.3087 0.2676 H 101 HIDALGO 6.176 11.300 14 41320 0.2174 0.1788 H 256 MORA 366.100 389.496 18 56367 0.22174 0.1788 H 404 QUAY 326.2000 329.221 21 68135 0.2111 0.1762 H 401 MCKINLEY 37.199 40.0000 13 38150 0.2334 0.1762 H 102 UNA 68.470 81.226 28 99045 0.1996 0.1651 H 402 CIBOLA 126.824 131.200 17 56625 0.2056 0.1801 H 405 GUADALUPE 285.182 291.289 18 60814 0.2027 0.1801 H 405 GUADALUPE 285.182 291.289 18 60814 0.2027 0.1801 H 405 <td>256</td> <td>COLEAY</td> <td>101.950</td> <td>123.933</td> <td>62</td> <td>201142</td> <td>0 2111</td> <td>0.2028</td> <td>×</td>	256	COLEAY	101.950	123.933	62	201142	0 2111	0.2028	×
101 HIDALOPE 232.314 239.395 20 101 0.2876 N 236 MORA 366.100 389.496 14 41320 0.2174 0.1788 N 401 QUAY 322.000 329.221 21 21 68135 0.2187 0.1956 N 401 MCKINLEY 37.199 40.000 13 68135 0.2187 0.1828 N 102 LUNA 68.470 81.224 28 99045 0.1936 0.1651 N 102 LUNA 68.470 81.224 28 99045 0.1936 0.1651 N 402 CIBOLA 24.565 49.970 47 183846 0.1751 0.1511 N 403 GUADALUPE 285.182 291.289 18 60814 0.2027 0.1801 N 404 TORRANCE 187.200 190.871 15 49206 0.20288 0.1880 N 405 GUADALUPE 272.997 273.602 3 50866 0.4040 0.3874	404	GUADALUDE	410.367	420.636	6	13315	0 3087	0.1495	×
236 MORA 366.100 389.496 16 41320 0.2121 0.1954 M 406 QUAY 322.000 329.221 21 68135 0.2187 0.1828 M 401 MCKINLEY 37.199 40.000 13 38150 0.2111 0.1762 M 102 LUNA 68.470 81.224 28 99045 0.1936 0.1651 M 101 GRANT 24.565 49.970 47 183846 0.1751 0.1511 M 402 CIBOLA 126.824 131.200 17 56625 0.2056 0.1827 M 403 GUADALUPE 285.182 291.289 18 60814 0.2056 0.1827 M 404 TORRANCE 187.200 19.6425 1.801 M M M M M M M M M M M M M M M M M M	101	HIDALCO	232.314	239.395	20	63007	0 2174	0.20/6	X
406 QUAY 326.100 389.496 18 56367 0.2217 0.1936 N 401 MCKINLEY 37.199 40.000 13 38150 0.2187 0.1828 N 102 LUNA 68.470 81.224 21 68135 0.2111 0.1762 N 101 GRANT 24.565 49.970 42 99045 0.1936 0.1651 N 402 CIBOLA 126.824 131.200 17 56625 0.2056 0.1821 N 405 GUADALUPE 285.182 291.289 18 60814 0.2027 0.1801 N 405 GUADALUPE 272.997 273.602 3 5086 0.4040 0.3874 N 405 GUADALUPE 272.997 273.602 3 5086 0.4040 0.3874 N 405 GUADALUPE 272.997 96.520 23 89573 0.1759 0.1678 N 402	254	MODALOU	6.176	11.300	14	61320	0 2121	0.1/88	
401 MCKINLEY 322.000 329.221 21 68135 0.2101 0.1828 N 102 LUNA 68.470 81.224 28 99045 0.1936 0.1990 N 101 GRANT 24.565 49.970 47 183846 0.1936 0.1651 N 405 GUADALUPE 285.182 291.289 18 60814 0.2027 0.1827 N 405 GUADALUPE 285.182 291.289 18 60814 0.2027 0.1827 N 404 TORRANCE 187.200 19.871 15 49206 0.2027 0.1827 N 405 GUADALUPE 277.2997 273.602 3 5086 0.4040 0.3874 N 401 MCKINLEY 4.166 9.042 14 47843 0.2027 0.1880 N 402 CIBOLA 89.729 96.520 23 5086 0.4040 0.3874 N 402 <td>604</td> <td>AULAS A</td> <td>366.100</td> <td>389.496</td> <td>18</td> <td>56367</td> <td>0 2187</td> <td>0.1954</td> <td></td>	604	AULAS A	366.100	389.496	18	56367	0 2187	0.1954	
IDEALNLET 37.199 40.000 13 38150 0.2111 0.1/62 N 101 GRANT 68.470 81.224 28 99045 0.1936 0.1651 N 101 GRANT 24.565 49.970 47 183846 0.1751 0.1651 N 402 CIBOLA 126.824 131.200 17 56625 0.2056 0.1827 N 405 GUADALUPE 285.182 291.229 18 60814 0.2027 0.1801 N 405 GUADALUPE 272.997 273.602 3 5086 0.4880 N 405 GUADALUPE 272.997 273.602 3 5086 0.2088 0.1880 N 405 GUADALUPE 272.997 273.602 3 5086 0.4880 N 401 MCKINLEY 4.166 9.042 14 47843 0.2004 0.3874 N 402 CIBOLA 89.729 96.520<	401	ACTINES	322.000	329.221	21	68135	0 2111	0.1828	×
101 GRANT 68.470 81.224 25 99045 0.1936 0.1990 N 402 CIBOLA 126.824 131.200 17 183846 0.1751 0.1511 N 405 GUADALUPE 285.182 291.289 18 60814 0.2056 0.1827 N 405 GUADALUPE 285.182 291.289 18 60814 0.2056 0.1827 N 405 GUADALUPE 272.997 273.602 3 5086 0.4040 0.3874 N 401 MCKINLEY 4.166 9.042 14 47843 0.2088 0.1880 N 402 CIBOLA 89.729 96.520 23 89573 0.1759 0.1678 N 402 CIBOLA 89.729 96.520 23 89573 0.1759 0.1678 N 402 CIBOLA 85.402 89.729 16.56651 0.1813 0.1765 N 402 CIBOLA	102	HUNINLET	37.199	40.000	13	38150	0.2111	0.1/62	×
101 0KANI 24.565 69.970 47 183846 0.1736 0.1836 0.1651 H 402 CIBOLA 126.824 131.200 17 183846 0.1751 0.1831 H 405 GUADALUPE 285.182 291.289 18 60814 0.2027 0.1827 H 404 TORRANCE 187.200 190.871 15 49206 0.2027 0.1820 H 405 GUADALUPE 272.997 273.602 13 5086 0.4040 0.3874 H 401 MCKINLEY 4.166 9.042 14 47843 0.1880 H 402 CIBOLA 89.729 96.520 23 89573 0.1759 0.1678 H 402 CIBOLA 96.520 102.200 19 71772 0.1813 0.1745 H 402 CIBOLA 85.402 89.729 16.5651 0.18651 H 401 MCKINLEY 16	101	LUNA	68.470	81.224	28	99065	0.1014	0.1990	×
405 GUADALUPE 285.182 291.229 17 56625 0.2056 0.1827 H 404 TORRANCE 187.182 291.229 18 60814 0.2027 0.1801 H 405 GUADALUPE 285.182 291.229 18 60814 0.2027 0.1801 H 405 GUADALUPE 272.997 273.602 3 5086 0.4060 0.3874 H 401 MCKINLEY 4.166 9.042 14 47843 0.2004 0.1892 H 402 CIBOLA 89.729 96.520 23 89573 0.1759 0.1678 H 402 CIBOLA 96.520 102.2000 19 71772 0.1813 0.17455 H 402 CIBOLA 85.402 89.729 16 58651 0.1868 0.1814 H 401 MCKINLEY 16.334 20.814 13 45866 0.1991 0.1909 H	602	GRANT	24.565	49.970	47	183866	0.1750	0.1651	H
GUADALUPE 285.182 291.289 18 60814 0.2036 0.1827 H 404 TORRANCE 187.200 190.871 15 60814 0.2027 0.1801 H 405 GUADALUPE 272.997 273.602 3 5086 0.4040 0.3874 H 401 MCKINLEY 4.166 9.042 14 47843 0.2004 0.1892 H 402 CIBOLA 89.729 96.520 23 89573 0.1759 0.1678 H 402 CIBOLA 96.520 19 71772 0.1813 0.1765 H 402 CIBOLA 85.402 89.729 16 58651 0.1816 H 401 MCKINLEY 16.334 20.814 13 45866 0.1991 0.1909 H	402	CIBULA	126.824	131.200	17	\$4425	0.1/51	0.1511	
404 10RRANCE 187.200 190.871 15 49206 0.2027 0.1801 H 405 GUADALUPE 272.997 273.602 3 5086 0.4040 0.3874 H 401 MCKINLEY 4.166 9.042 14 47843 0.2004 0.1892 H 402 CIBOLA 89.729 96.520 23 89573 0.1759 0.1678 H 402 CIBOLA 96.520 102.200 19 71772 0.1813 0.1745 H 402 CIBOLA 85.402 89.729 16. 58651 0.1868 C.1814 H 402 CIBOLA 85.402 89.729 16. 58651 0.1813 0.1745 H 401 MCKINLEY 16.334 20.814 13 45866 0.1991 0.1909 H	405	GUADALUPE	285.182	291.289	18	60816	0.2056	0.1827	×
403 GUADALUPE 272.997 273.602 3 5086 0.4088 0.1880 H 401 MCKINLEY 4.166 9.042 14 47843 0.2004 0.3874 H 402 CIBOLA 89.729 96.520 23 89573 0.1759 0.1678 H 402 CIBOLA 96.520 102.200 19 71772 0.1813 0.1745 H 402 CIBOLA 85.402 89.729 16 58651 0.1868 0.1814 H 401 MCKINLEY 16.334 20.814 13 45866 0.1991 0.1909 H	404	TURRANCE	187.200	190.871	15	69206	0.2021	0.1801	×
401 MCKINLEY 4.166 9.042 14 47843 0.4040 0.3874 H 402 CIBOLA 89.729 96.520 23 89573 0.204 0.1892 H 402 CIBOLA 96.520 102.200 19 71772 0.1813 0.1678 H 402 CIBOLA 85.402 89.729 16 58651 0.1813 0.1745 H 401 MCKINLEY 16.334 20.814 13 45866 0.1941 0.1909 H	405	GUADALUPE	272.997	273.602	-3	5086	0.2088	0.1880	
402 CIBOLA 89.729 96.520 23 89573 0.12004 0.1892 N 402 CIBOLA 96.520 102.200 19 71772 0.1813 0.1765 N 402 CIBOLA 85.402 89.729 16. 58651 0.1868 0.1814 N 401 MCKINLEY 16.334 20.814 13 45866 0.1941 0.1909 N	401	MCKINLEY	4.166	9.042	14	67863	0.4040	0.3874	×
402 CIBOLA 96.520 102.200 19 71772 0.1759 0.1678 H 402 CIBOLA 85.402 89.729 16 58651 0.1813 0.1745 H 401 MCKINLEY 16.334 20.814 13 45866 0.1941 0.1909 H	402	CIBOLA	89.729	96.520	21	80577	0.2004	0.1892	×
402 CIBOLA 85.402 89.729 16. 54651 0.1813 0.1745 x 401 MCKINLEY 16.334 20.814 13 45866 0.1941 0.1816 x	402	CIBOLA	96.520	102.200	19	71773	0.1759	0.1678	X
401 MCKINLEY 16.334 20.814 13 45866 0.1941 0.1909 #	902	CIBOLA	85.402	89.729	14		0.1813	0.1745	X
43666 0.1941 0.1909 H	401	MCKINLEY	16.334	20.816	11	20031	0.1868	0.1814	X
			Contraction of the			43000	0.1941	0.1909	

a four calendar-year file (1982-1985) containing data from all 7,089 large truck accidents in the State and the 1987 Roadway Inventory tape containing, among other things, traffic volume and section length information. Both files (as well as the code written to merge the files and calculate the critical sections) are written in SAS (for Statistical Analysis System), a broad-based computer software system for information storage and retrieval and statistical analysis (<u>SAS User's Guide:</u> <u>Basics</u> 1982; <u>SAS User's Guide:</u> Statistics</u> 1982). Examination of the accident data identified 1,666 locatable large truck accidents on the State's rural Interstate system for the time period in question.

The Roadway Inventory files yielded 580 arbitrarily-defined segments of rural Interstate roadway, with lengths ranging from just over 20 feet to slightly under 11.5 miles. Combining information from the accident records with segment length and ADT information from the Inventory enabled the calculation of a systemwide accident rate (RA) for the entire rural Interstate system. This rate is 0.1152 large truck accidents per million vehicle-miles of travel (one large truck accident per 8.7 million vehicle-miles of travel). Variations from the system-wide rate are apparent when individual highways are examined. The entire length of I-10, for example, has both high numbers of observed large truck accidents and accident rates per million vehicle-miles considerably higher than average. Similarly, two sections of I-40, one beginning at the Arizona border and the other at the Guadalupe County line, have both high numbers and rates. Interstate 25, on the other hand, has, with one exception, rates which are considerably below average.

Use of the systemwide accident rate results in the critical rate calculation for individual sections for a significance level of 0.05 as follows:

$$RC = 0.1152 + 0.5583 / 1/M + 0.5/M$$

The process illustrated in Figure 2 identifies 580 unique rural Interstate segments in the Roadway Inventory. Vehicle-miles of travel on each segment is calculated by multiplying the ADT for the segment, the segment length in miles, and the number of days in the 4-year analysis period (1460). In order to reduce the total number of segments to a more manageable group and to eliminate very short segments, the program compares ADTs of adjacent segments; if they differ by less than 100 vehicles per day (VPD), the program combines the two and determines a revised VMT. This procedure is repeated until ADTs differ by more than 100 VPD; at this time the combined information is retained and a section is defined.

This process identifies 251 sections. From locational information - coded mileposts - in the two computerized files, the number of large truck accidents occurring on the sections is determined and an accident rate for the section is calculated. This information is then sorted by route number and milepost, ranked by criticality, and printed.

A total of 40 rural New Mexico Interstate sections is identified in the example as being critical. Of the 40 identified sections, only 4 are on I-25 and 6 on I-10; the remaining 30 sections are on I-40. These sections are shown in Table 1. Information on the critical sections includes the administrative route number, the county, the beginning and ending mileposts of the section , the number of large truck accidents on the section during the four year 1982-1985 analysis period , the daily vehicle-miles of travel, and the actual and critical accident rates for the section. Such a listing may be employed by a routing analyst to identify sections of a roadway system with high large truck accident rates.

SUMMARY AND CONCLUSIONS

The objective of this paper has been to develop a procedure for identifying portions of a highway system experiencing high accident rates involving large trucks. A computer code has been written to merge accident and roadway inventory information and, employing a technique borrowed from industrial quality control, to rank roadway sections based on a comparison of the actual accident rate on the section and a statistically-determined critical rate. This information may be valuable in the analysis of routing alternatives.

While the technique can rank roadway sections by the accident rate on the section, a number of enhancements may be appropriate in order to improve the process. Better estimates of truck, rather than total vehicle travel, as well as other data base improvements, need to be addressed further. This enhancement also involves more control over traffic volume counts in general. Efforts are now underway at the state level to address both of these issues (<u>New Mexico State Traffic Monitoring Standards</u> 1988).

A second area of concern is the fact that the locational information in the Roadway luventory is superior to that contained in the Accident Record System. One incorrectly coded accident could thus have a dramatic impact on the identification of a critical location, particularly on short sections with low ADTs. This may be less of a problem on Interstate facilities where reporting is handled by State Police.

A final area of interest is the continual updating of the Accident Record System data base. Recent changes have included a variable designating hazardous material involvement in the Accident file as well as details relating to placarding, cargo manifests, and hazardous material spills in the Detail level file.

REFERENCES

Kittell, H.J., <u>Effective Utilization of Data from the Highway Performance Monitoring System</u>, Federal Highway Administration, Final Report, FHWA-VA-85-12, (1984).

<u>New Mexico State Traffic Monitoring Standards</u>, New Mexico State Highway & Transportation Department, (1988).

SAS User's Guide: Basics, SAS Institute, Inc., Cary, NC, (1982).

SAS User's Guide: Statistics, SAS Institute, Inc., Cary, NC, (1982).

U.S. Department of Transportation, <u>Fatal Accident Reporting System 1983</u>, <u>A Review of</u> <u>Information on Fatal Traffic Accidents in t he U.S. in 1983</u>, National Center for Statistics and Analysis, DOT HS 806 705, (1984).

U.S. Department of Transportation, <u>National Accident Sampling System - 1985</u>. A Report on <u>Traffic Accidents and Injuries in the United States</u>, National Highway Traffic Safety Administration, DOT HS 074, (1987).

Wolff, Theodore A., <u>Survey of States for Existence of Large-Truck Accident Rates and</u> <u>Computerized Databases That Could Be Analyzed To Obtain Large-Truck Accident Rates</u>, SAND88-0626, TTC-0790, Sandia National Laboratories, (1989).

Zegeer, Charles V., <u>Highway Accident Analysis Systems</u>, National Cooperative Highway Research Program Synthesis of Highway Practice 91, Transportation Research Board, (1982).

Session VI-4

International Operations Experience