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Abstract

PHASE CHANGE MODELS FOR CASK ANALYSIS.

The applicability of the pure conduction model is considered for lead-shielded casks
in which melting occurs. By modifying the classical pure conduction melt model, the inadequacy
of this model for melting in lead shielded casks is demonstrated.

1.  INTRODUCTION

The purpose of this paper is to consider the applicability
of the classical formulation of the phase change problem for
the thermal analysis of lead shielded packaging used to
transport radioactive material. The classical model assumes
that the conduction mode of heat transfer prevails in the
lead shield for both the solid and liquid phases [1].
Although the exact classical solution is not typically used
by thermal analysts, the classical model appears in numerical
form in at least one important and frequently used heat
transfer computer program [2]; it is probably used for other
heat transfer programs.

On the basis of a fire test reported by Wachtell and
Langhaar [3], it is evident that natural convection heat
transfer should be considered if molten lead is present in a
cask. Furthermore, analytic investigation of phase change
using a conduction-convection melt model suggests a number
of difficulties associated with the classical pure conduction
model [4]. The difficulties associated with the pure conduction
model include possible under prediction of the progress of
the melt front, and the erroneous prediction of a uniform
melt front profile along the height of the melting region.

When analysis is used to demonstrate compliance with
international [5], United States [6], or other transportation
regulations with regard to shielding adequacy, the extent of
lead melt in a cask may be important. An accurate estimate
of the shielding configuration is needed to assess the
radiation protection provided by the packaging.
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2.  THEORETICAL RACKGROUND
2.1 Physical Description

The physical phenomena of interest are heat transfer by
conduction and natural convection and phase change.
Conduction heat transfer occurs in solids, liquids, or
gases. Natural convection heat transfer occurs in liquids
or gases. For natural convection, the driving force is
buoyancy of a heated fluid. The phase changes of interest
are between the solid and Tiquid phases.

Consider a large lead system encased in a thin highly
conductive shell and initially at constant temperature below
melt. The surface temperature is raised at a uniform rate
to a temperature above melt.

Initially, a narrow melt region is formed with little
mixing of the liquid lead; conduction heat transfer dominates
in the Tiquid region. As the melt front progresses, the
liquid region becomes larger and the buoyancy induced
mixing increases, resulting in enhanced heat transfer by
natural convection and increased progress of the melt
front. The mixing is initially laminar; as the melt region
becomes larger and the temperature differences greater the
mixing becomes turbulent. For laminar convection in the
melt region, the heat transfer is found to vary with the
height for a vertical system [7] [8]. For turbulent heat
transfer height dependence is not expected [8].

2.2 Classical Mathematical .Description (Pure Conduction)

The pure conduction model considered is the one-dimensional
(x) melting of a semi-infinite region with a constant
temperature surface condition. The melt front location, S,
and the temperature distributions, T, and T_ in the liquid
and solid regions are found in terms'of tim@, t; surface
temperature, T,; melt temperature, T ; thermal conductivity,
ki; thermal di?fusivity, ol and deWsity,,ﬂ . The subscript,
i, is either s or 1 for solid or liquid. The solution [1]
is presented in equations (1), (2) and (3), assuming an
initial temperature, To'

s = 20T 1)
T] ¥ Ao o -(Igrr_f;’.—[n)- erf ( %/ 2'#0(] . (2)
i ysudie sl erfc (x/2 V(1) (3)
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where the heat of fusion, h., and the specific heat, Cqs
are used to find A , the root of equation (4)

Xe')? ks Vo (T - To)e“

e K Vels (Tg - T,) erfc (ny/ets)
he \WWiT

-G, (T-T) (4)

The problem is simplified by specifying an initial
temperature equal to the melt temperature i R SR o A
solid temperature, T_, is then constant and €qual to the
melt temperature, T_. Equations (1) and (2) are unchanged,
but the root equati@n, (4), is simplified. The simplified
and rearranged root equation is:

A (6] %)

2
Ae A erf (N) = ¢, (Tg-T, )/(hdT ) (5)

2.3 Natural Convection

Natural convection is considered in tems of the
dimensionless groups: Nusselt number, Nu, which is the
ratio of convection to conduction heat transfer; Grashof
number, Gr, which is the ratio of buoyant and viscous drag
forces; Prandtl number, Pr, which is the ratio of momentum
and thermal diffusivities and Rayleigh number, Ra, which is
the product of Gr and Pr.

The Nusselt number correlations used in the paper for
vertical plates with laminar or turhulent heat transfer are

[8]:

Laminar: MNu = 0.3 Ray0.25' Ra(105 (6)
Turbulent: MNuy = 0.028 Ra’0.355’
4 x 10" < ra ¢ 108 7)

where y = vertical height, x = distance between vertical
surfaces.

The Rayleigh number is given in terms of the volume
expansion coefficient, d ; the temperature difference, AT;
density, 2 ; thermal diffusivity, oL viscosity,/u 3 gravity,
g and characteristic length, L

Ra = (9P ATLY) / (o) (8)
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TABLE I. PROPERTY VALUES

Property Symbo1 Phase* Value
dens ity 2 5,1 10560 kg/m>
specific heat c £ 0.161 kJ/kg-°C
conductivity kS s 34.6 W/m-°C
k] 1 16.3 W/m-°C

thermal A s 20.2x10°0 mzls

di Ffusivity e 8y 9.5x10°8 m?/s
melt temperature Tm - 327°C
heat of fusion hf - 23.34 kd/kg
viscosity . 1 2.81x10™3 N-s/m?
volume expansion /AS 1 l.14x1054/°c
gravity constant q - 9.8 m/s
Prandtl number Pr 0.0239

—t il

Rayleigh group Ra/L3 T 5.13x108/(°C m°)

*s = solid, 1 = liquid

3.  ANALYSIS
3.1 Properties

Constant properties are used for analysis. The property
values are taken at 355°C which is just above the melt
temperature of lead (327°C); however, conductivity of solid
lead is taken at the melt temperature. Table I gives the
values used.

3.2 Analytic Models

Three models are considered. The first is the classical
one-dimensional model used to find the time dependent melt
front location. The remaining two use effective thermal
diffusivity to account for natural convection in the melt to
predict the time dependent melt front location.

3.2.1 Model 1

This is the classical one-dimension model [1] of a semi-
infinite lead system, initially at the melt temperature
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TABLE II. SELECTED SOLUTIONS FOR MODEL 1

Melt Front S (m
AT=Tg-T_ (°C) A t=900s t=1800 5_2'7_£t= 00s t=3600s

1 0.05879 0.011 0.016 0.019 0.022
10 0.18368 0.034 0.048 0.059 0.068
50 0.39420 0.073 0.104 0.127 0.147

100 0.53482 0.099 0.141 0.172 0.199
200 0.70140 0.130 0.185 0.226 0.261

(T =T =327°C). The surface temperature is raised to T, at t
=8 Und held constant. Substitution of the property §a1ues
from Table I into equation (5) yields an equation for the
root, A, in terms of the temperature difference £ST=(TB-

Tn)

2
Xe}‘ erf (\) = (Tg = T,.)/257 (9)

Substituting the thermal diffusivity, ofy = 9.5x10'6m2/s,
into equation (1) yields

S = 6.2x10"AYT (10)

Solutions of equations (9) and (10) for selected values
of AT and t are given in Table II.

J22 Model 2

The classical one-dimensional model is used with the
same specifications as Model 1; however, an effective thermal
diffusivity is used and the surface temperature is held
constant. The effective thermal diffusivity,e¢ .., is
defined as the product of Nu and &(,. The NussSf{ number
correlation for turbulent natural c&nvection is used. Based

on fire test results for a cask [3], a surface temperature,
TB’ of 527°C is assumed

Kopp = NupeX, (1)
using the Table I data, AT = TB - Tm = 200°C and equations
(7) and (8)

3 3 .3
Ra = 1.03x 10" « (12)
N, 7 = 2.27 x 107 ) - 065 (13)




558 LAKE

TABLE III. SELECTED SOLUTIONS FOR MODEL 2

Melt Front S (m)

o (m) Ra Nu t=25s t=30s t=40s t=50s t=60s
0.05 1.29x10£ 9.3 0.066 0.073 0.084 0.094 0.103
0.10 ].03x108 19.5 0.096 0.105 0.121 0.136 0.149
0.15 3.48x10 30.1 0.120,  0.1327 0,152 . .0.170. D186

For AT = 200°C, A= 0.7014 and the melt front is equation

S =4,35x 1073 Vst (14)

Solutions of equations (12), (13), and (14) for selected
values of 4 and t are given in Table III. Because of the
rapid progress of the melt front for this model, values of
t € 60s are considered.

el Model 3

The third model is a two-dimensional slab, 0.5 m high
by 0.1 m thick, insulated on three sides and initially at
the melt temperature (327°C). The effective thermal diffusivity
is used again, but the surface temperature, T,, is 328°C
(AT = 1°C). For this case, laminar natural gonvection heat
transfer is assumed and Mu depends on height

lepr = Nu Xy (15)

using Table I data, AT = Tg = T, = 1°C, and equations (6)
and (8)

B3

Ra = 5.13 x 107 y (16)
Nu, = 45.15 y0:75 (17)
For AT = 1°C, A= 0.05879, and the melt front equation is
S =3.645 x 10~ Viu_t (18)

Solutions of equations (16), (17), and (18) are given
in Table IV for y's of 0.1m, 0.2m, 0.3m, 0.4m and 0.5m, and
for t of 1/4 h (900s) and 1/2 h (1800s).
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TABLE IV. SOLUTIONS FOR MODEL 3

Melt Front S (m)

y(m) Ra Nu t=1/4 h (900s) t=1/2 h (1800s)
0.1 5.13x1og 8.03 0.031 0.044
0.2 4.10x105 13.5 0.040 0.057
0.3 1.39x10; 18.3 0.047 0.066
0.4  3.28x100  22.7 0.052 0.073
0.5  6.41x10 26.8 0.056 0.080

3.3 Discussion of Analytic Results

The results given for Models 1 and 2 in Tables II and
III show that the effective thermal diffusivities assumed
result in much more rapid progress of the melt front than
predicted by the pure conduction model. From Table II (pure
conduction model), we find that it takes between 900s (1/4 h)
and 1800s (1/2 h) to melt 0.15m when AT is 200°C. From
Table III, the same melt is achieved in about 40s using the
effective thermal diffusivity model.

For the laminar natural convection case (Model 3, Table
IV) a comparison with the AT = 1°C case for pure conduction
(Model 1, Table II) is made. Again, more melt is observed
for Model 3 which uses an effective thermal diffusivity to
account for convection. Also, a non-uniform melt profile is
observed.

Before closing the discussion of the models considered,
a cautionary note is needed. The adjusted pure conduction
models used (Models 2 and 3) are intended only to show the
potential deficiency of using a pure conduction model for
lead systems where melting occurs. The method is not intended
to predict the melt front location, nor is it intended to
predict temperatures in the melt region.

4. CONCLUSION

The pure conduction model for lead melt in shipping
casks does not accurately predict lead shield behavior under
the fire accident tests specified in regulations [5] [6].
Although the method of using effective thermal diffusivity
may prove useful it should not be used indiscriminately;
furthermore, test or experimental verification is necessary
to justify such a model for cask analysis. To develop a
reliable approach to analysis of lead melting and solidification
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in casks, analytic and numerical models which adequately
account for convection must be developed and verified through
experiments and tests.
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