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ABSTRACT 
Nuclear forensics rely on a mosaic of approaches to support the determination of nuclear material 
origin and production pathway. Morphology, or the analysis of size, shape, structure and 
distribution of features, is an emerging approach with the potential of providing signatures of 
nuclear process history. An expert can perform a morphological analysis using a human-assisted 
machine learning image analytic toolkit developed at Los Alamos National Laboratory to segment 
(outline) material particles from scanning electron microscope (SEM) imagery and obtain 
quantitative statistics. Human-mediated segmentation requires many decisions—like deciding 
which particles to segment and determining the boundary of a segmented particle—making it a 
time-consuming effort. This work focuses on assessing ambiguity in the human segmentation of 
particles from SEM images in nuclear forensics applications. We investigate this through exploring 
the gray-scale values of pixels surrounding a human segmentation and comparing with variations 
on fuzzy c-means image segmentation to explore the neighborhood of boundaries at the 
perimeter of particles.  
 
INTRODUCTION 
There are a wide range of analytic tools that nuclear forensic scientists can use to gain insights 
from a sample of interest, like the sample production pathway [1]. One emergent method for 
nuclear materials is morphology, or the analysis of the analysis of size, shape, structure, and 
distribution of features of particles, occlusions, pores, agglomerates, and other features in 
microscopy images, typically with scanning electron microscopy (SEM). Quantitative image 
analysis for morphology has typically been done through human-mediated segmentation with 
expert judgment determining distinctive features such as particle type or particle boundary. This 
process confers a high cost in terms of analyst time. A typical human segmentation can be seen 
in Figure 1 where the user segmented a complex materials image by identifying the features of 
interest, delineating them, and labeling them with color labels.  

 
Figure 1. Illustration of the typical segmentation pipeline. 
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With this segmented image with colored labels, quantitative analysis of each particle type, 
denoted by color in the image, can be performed. Typical measurement attributes include area, 
circularity, and ellipse aspect ratio.  
 
To perform morphologic segmentation, Los Alamos National Laboratory has developed a human-
assisted machine learning image analytic toolkit which combines the ability to segment (outline) 
material particles from scanning electron microscope (SEM) imagery and obtain quantitative 
statistics into a single software called Morphological Analysis of Materials (MAMA) [2, 3]. MAMA 
has over one hundred registered users at twenty-four US government organizations, academic 
institutions, and international partners. In nuclear forensic research, MAMA has been used to 
show that morphological analysis using segmentation and quantitative analysis of uranium ore 
concentrates has been effective for identifying the process history and conditions of uranium ore 
concentrates across different synthetic pathways mimicking commercial production pathways [4, 
5, 6, 7].These results underscore both the usefulness for morphology signatures and motivate the 
need for advancement. One outstanding question is what is the uncertainty associated with the 
segmentation.  
 
In forensics applications, uncertainty is an important measure of confidence in the downstream 
statistical quantifications. Previous approaches invoke such assumptions of a Gaussian 
distribution that ignores the features of the image itself that can lend to the ambiguity of 
segmentation. Such features include pixel intensity, contrast and their relationship to edge 
location, edge sharpness, and surface detail at different scales, particularly locally, i.e. 
surrounding segmented particles, and globally, i.e. taking the entire image into account [8]. What 
is needed is an uncertainty quantification measure is based on the characteristics of the image 
itself rather than distributional assumptions that are not based on image characteristics. 
 
There are at least two main types of uncertainties that are present in image segmentation: aleatory 
uncertainty that is the uncertainty associated with randomness and epistemic uncertainty that is 
the uncertainty associated with a lack of knowledge [9]. Epistemic uncertainty in imagery can be 
found with low contrast particle edges that can be hard to segment. In the case of the algorithmic 
segmentation, we as an end user can be epistemically uncertain as to why an algorithm selected 
a particular segmentation; an uncertainty characterization based on the image characteristics is 
a technological gap for both human and algorithmic approaches to image segmentation. Figure 2 
illustrates poorly defined boundaries in a sample. Focusing particularly on the center of the image, 
determination of discrete particles is difficult. We can consider this as the type of epistemic 
uncertainty where we are uncertain as to what class to assign a pixel, i.e. is this pixel a boundary 
or not?  
 

 
Figure 2. An example SEM image with poorly defined boundaries. 
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To help answer the question of whether a pixel is part of a boundary or not part of a boundary, 
this work explores ambiguity in segmentation by quantifying segmentation uncertainty in an 
unsupervised manner using the enhanced fuzzy c-means algorithm [10]. This algorithm uses 
fuzzy logic where pixels can belong to multiple classes simultaneously. This is expressed by a 
membership function that expresses the degree to which a pixel belongs to different classes. 
More specifically, we explore modifications to the enhanced fuzzy C-means (EnFCM) algorithm 
to identify different classes in an unsupervised way and generate values of group membership as 
a function of gray level value. This grounds the basis of the membership function based on 
measurable quantities from the image itself.  
 
METHODS 
 
SEM Image Data 
We used scanning electron microscope (SEM) imagery from a previous study that examined the 
effect of diel cycling of temperature, relative humidity, and synthetic production route on the 
surface morphology of alpha-U308 [5]. This data consisted of 78 images from different samples 
and replicates of alpha-U308 imaged at many different magnifications. The size of each image is 
(943, 1024) pixels.  
 

 
Figure 3. Example SEM image and associated segmented particles. 

 
Enhanced Fuzzy C-Means Algorithm 
This work applies the enhanced fuzzy C-means (EnFCM) algorithm developed by Szilagyi et al. 
[9]. This algorithm builds on the work of the standard fuzzy C-means algorithms (FCM) which 
groups values 𝑥𝑘, k=1, n, into c clusters by  minimizing the objective function given by Eq. (1) [12]: 

𝐽𝐵 =  ∑ ∑ 𝑢𝑖𝑘
𝑝

𝑁

𝑘=1

𝑐

𝑖=1

(𝑥𝑘 − 𝑣𝑖)2 (1) 
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Where 𝑣𝑖 is the prototype value of the ith cluster, 𝑢𝑖𝑘
𝑝

 is the fuzzy membership of the kth pixel with 

respect to cluster i, and p is a weighting exponent. This was later modified by Ahmed et al. to 
allow for local pixel neighborhoods to influence the classification of neighboring pixels [13]. This 
modified the objective function to be Eq. (2): 
 

𝐽𝐴 =  ∑ ∑ [𝑢𝑖𝑘
𝑝 (𝑥𝑘 −  𝑣𝑖)2 +   

𝛼

𝑁𝑘

∑ 𝑢𝑖𝑘
𝑝 (𝑥𝑘,𝑟 −  𝑣𝑖)
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𝑟=1
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𝑁
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𝑐

𝑖=1

 (2) 

 
 

where 𝑥𝑘,𝑟 represents the neighbor pixels of 𝑥𝑘 and 𝑁𝑘 is the number of pixels in the neighborhood 

of the kth pixel. The 𝛼 value controls the intensity of the neighborhood influence.  
 
The EnFCM algorithm takes these algorithms and performs further modifications, by first 
normalizing pixel intensity in the neighborhood of interest according to Eq. (3) to use the objective 
function given by Eq. (4). 

𝜉𝑘 =
1

1 +  𝛼
 (𝑥𝑘 +  

𝛼

𝑁𝑘

∑ 𝑥𝑘,𝑟

𝑘

𝑟=1

) (3) 
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𝑝

𝑞

𝑙=1
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𝑐

𝑖=1

 (4) 

 
where 𝛾𝑙 denotes the number of pixels from the image having an intensity equal to l, where 
l=1,..,,q, where q is the number of gray levels in the image.  
 
To minimize this objective function, the algorithm first calculates the fraction of pixels at each gray 
level and initializes cluster prototypes. Then the membership function of the pixels to each class 
is updated to Eq. (5) and followed by an update to the new values of the cluster prototypes 
according to Eq. (6). This is repeated until the convergence threshold or maximum number of 
iterations is reached.  

𝑢𝑖𝑙 = ∑ (
𝜉𝑙 −  𝑣𝑖

𝜉𝑙 −  𝑣𝑗

)
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𝑝−1

𝑐
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 (5) 
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𝑝

𝑞
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)

−1

(6) 

 
Image Processing 

Using the human segmentations from the 78 SEM images, image patches of each of the 2083 
segmented particles were extracted. A binary mask version of each segmented particle image 
patch was also created. For each of the 2083 segmented particle image patches, the EnFCM 
algorithm was run using a gray-level scale of 255, 4 clusters, fuzziness degree (m) of 2, 
convergence threshold of 0.05, a window size of (3,3), and a neighborhood effect of three. 
  
From the fitting of the EnFCM to each image, the value for each cluster for each gray level are 
used to represent the membership function for the fuzzy approach to image segmentation. An 
example of the resulting membership function is shown in Figure 4. Note that in the intersection 
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of classes, we observe that each of the possible classes contributes a non-zero membership to 
the ambiguity in class selection (blue, yellow, green, and red distributions). This contrasts with 
the typical segmentation approach where pixel classes (or clusters in this application) are discrete 
values and assigned based on the class with the highest probability, without consideration of the 
probability distribution. These intersections confirm the intuition that the clustering of pixels into 
classes has uncertainty, which is not acknowledged with typical segmentation approaches. 

 
Figure 4. The fuzzy c-means membership function. 
 

The original gray-level image can be converted from gray level pixel space to class space (and 
vice versa). This is shown in Figure 5. This use of thresholds is found in conventional image 
segmentation, but unlike normal segmentation, this approach uses the continuum of classes 
allowing for a more granular thresholding approach.  
 

 
Figure 5. Left: The original segmented particle patch (uses discrete gray levels, 0-255).  
Right: The Fuzzy C-Means image (uses weighted average class value, continuous between 0 
and 3) 
 
The newly created image, called the Fuzzy C-Means image (right in Figure 5), can now be 
manipulated. Three specific manipulations are performed and an additional image is generated 
from each, shown in Figure 6: 
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1) Outer image: Threshold the image at the user-specified membership function value to 

capture the human segmentation and outer  (left image in Fig. 6) 
2) Intermediate image: Human segmentation image with clusters labeled by colors (middle 

image in Fig. 6) 
3) Inner image: Threshold the Human segmentation (Intermediate) image (generated above in 

2) at the same user specified value from 1 (right image in Fig. 6) 
 
These manipulations create an outer and inner bound on the human segmentation. After the 
manipulations above, the contour of the largest area in the image is found using the OpenCV 
library and extracted for quantitative analysis. The largest area will correspond to the particle area 
of interest given the initial tight crop of the segmented particle image patches. There are many 
quantitative features that could be calculated for each particle. This analysis focused on particle 
circularity. 
 

 
Figure 6.  Left: Outer image: Fuzzy C-Means image thresholded at input parameter (1.05). 

Middle: Intermediate image, the human segmentation.  
Right: Inner image, threshold of intermediate image at user-input value (1.05) 

 
 
RESULTS 
Using the quantitative metric of particle circularity to allow for comparisons between the outer 
segmentation boundary (left image in Figure 6 panel), the intermediate segmentation boundary 
image from human segmentation (middle image in Figure 6 panels), and the inner segmentation 
boundary (right image in Figure 6 panels).  
 
Circularity 
Circularity is a measure that relates the ratio of the particle area to the particle perimeter. Values 
closer to 1 indicate a more circular particle. The distributions shown in Figure 7 show that human 
segmentation is skewed towards more circular than both the inner and outer segmentations. This 
figure demonstrates that both fuzzy segmentations are vastly different from the human 
segmentation. 
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Figure 7. Histogram of circularity for each image type. 

 
This finding is confirmed with the Welch’s t-test (also known as the unequal variances test)  was 
performed for two comparisons for each metric using all 2083 data points for circularity: 
 

1) The outer boundary and the intermediate boundary 
2) The inner boundary and the intermediate boundary 

 
Table 1 reports the test-statistic and corresponding p-value for each comparison of interest for 
each metric.  
 

  Table 1. Welch’s t-test results for comparison of means of distributions for 
different segmentations.  

Metric Comparison t-statistic p-value Distributions have the 
same mean? 

Circularity Outer vs. Intermediate 42.23 2.55E-319 No 

Circularity Inner vs. Intermediate 18.79 1.67E-75 No 

 
The test for equivalence of the mean for circularity comparing the Outer Image to the Intermediate 
as well as the Inner Image to the Intermediate supports the uncertainty in the characterization of 
circularity. The human segmentation is more circular then either of the fuzzy c-means 
segmentations. The difference between the Outer, the Inner, and the Intermediate offers a new 
insight into the uncertainty in the clustering of gray-level pixels into classes.  
 
DISCUSSION 
The Welch’s t-test comparisons for the three segmentations yield meaningful results with respect 
to the characterization of uncertainty in gray-scale imagery. The results for circularity show that 
the intermediate human segmentations skew more circular. This suggests that gray scale values 
and membership functions within the area of a particle and across the perimeter of the particle is 
heterogenous and residing more in the intersections between classes. If these are accounted for 
the shape across the particle is less consistent than the human segmentation implies. 
Consequently, exploring the area of human segmented boundaries is a meaningful source of 
gray-scale values. This difference in quantitative features derived from the enhanced fuzzy c-
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means membership represent a first step towards quantifying and understanding epistemic 
uncertainty of particle segmentation.  
 
CONCLUSION 
Morphology is an emerging analytical signature for nuclear forensic applications, especially for 
understanding sample process history. To use morphology signatures, SEM images must be 
segmented and quantitatively analyzed, either by a human or an algorithm. This work focuses on 
the exploration and quantification of epistemic uncertainty of the segmentation to understand the 
impact on quantitative metrics used for data analysis while maintaining an agnostic view towards 
how segmentations are produced. The enhanced fuzzy c-means algorithm allows us to take 
advantage of a membership function to represent the uncertain clusters of pixels in a segmented 
image. Using the membership function allows for the examination of image quantification metrics 
in comparison to the human segmentation, by looking at neighborhoods of pixels around the 
segmentation and quantify the ambiguity. This represents an important start towards quantifying 
uncertainty in SEM morphology signatures in forensic applications.  
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