
SAMPLAN — A new tool to support effective SG
sampling plans

Aaron M Bevill, Robert Binner, and Claude F Norman

International Atomic Energy Agency, Vienna, Austria

a.bevill@iaea.org

ABSTRACT

Nuclear safeguards experts use advanced statistical algorithms to calculate verification sampling plans. Sampling

plans must meet or exceed safeguards performance targets with minimal use of safeguards resources. For example, a

plan will call for a certain number of resource-sparing non-destructive assay (NDA) verifications and high-precision

destructive analysis (DA) samples in order to achieve an overall detection probability with minimal “cost” of

inspection time, shipping fees, laboratory burden, facility disruption, etc.

In recent years, experts in safeguards statistical and probabilistic methodologies have proposed algorithmic advances

to further improve sampling plans’ efficiency while improving field usability, adapting to revised safeguards

objectives, and maintaining a high level of effectiveness. These algorithms are implemented in the SAMPLAN software

toolkit. Today, SAMPLAN is notable for both its current capabilities and its development strategy: evolutionary

prototyping is used to rapidly refine algorithms, user interfaces, test cases, etc., which can then be implemented in

production software for long-term use. This paper documents the prototyping strategy and SAMPLAN’s resulting

capabilities.

Keywords: IAEA; safeguards; diversion detection; detection probability; methods development

1 INTRODUCTION

The “timely detection of diversion of significant quantities of nuclear material … and deterrence

of such diversion by the risk of early detection” is a key safeguards objective for the International

Atomic Energy Agency (IAEA) [1]. In practice the IAEA meets this objective through nuclear

material accountancy, backed by inspections to verify the accountancy declarations’ accuracy.

Since it is impossible to verify every declared item with perfect sensitivity, the inspections achieve

this safeguards objective—deterring diversion by creating a risk of early detection—using random

sampling. Drawing robust safeguards conclusions from random samples requires bespoke

statistical algorithms.

For example, bespoke algorithms are used to evaluate the detection probability (DP) or conversely

to plan sample sizes sufficient to achieve a specified DP. The most commonly used sample size

calculation (SSC) algorithm is an approximation introduced in an era in which “not all the

inspectors had ready access to a [personal computer] on all occasions” [2]. Although “the quality

of the approximate algorithm was found to be very good” [ibid.], new approaches have been

developed to improve upon this SSC algorithm and its implementation. The resulting SSC process

is more flexible and precise and therefore yields plans that are equally effective but more resource-

efficient. The updated SSC algorithms, software prototype, and process are discussed in the

SAMPLAN CAPABILITIES section below.

Besides what these capabilities are, readers may also take interest in how these capabilities were

developed from whiteboard sketches to field-ready prototypes. The SAMPLAN prototyping

framework was carefully selected to overcome the challenges one observes in projects integrating

new technology into existing safeguards systems. These challenges and the SAMPLAN prototyping

framework are discussed next.

2 REFINING STATISTICAL ALGORITHMS FOR SAFEGUARDS

For safeguards algorithms and software, one is confronted by technology integration challenges as

early as the requirements gathering phase. The new technology is required in some ways to

maintain continuity with the replaced technology while in other ways improving upon it. For

example, facility approaches may specify total sample sizes but leave flexibility in the verification

methods applied to each sample. It is often difficult to assess a priori which aspects can be

improved and which must be maintained; the assessment usually depends on interdependent

processes, which have evolved over decades and may vary by facility type and scale and by

safeguards agreement. In such projects, even carefully elicited requirements may be incomplete or

misadjusted.

SAMPLAN is one such project with limited a priori knowledge of requirements. The predecessor

software and processes for the typical SSC problem are frequently used, and training on these

processes is well established. However, the software and algorithms have not been updated since

at least 2001 [2], and many improvements have been proposed. Given the complexity of IAEA

safeguards, experts have limited ability to foresee side-effects of updated SSC algorithms,

e.g. sample sizes exceeding facility-specific targets or insufficient data to effectively assess

declaration-measurement quality. SSC calculations are also typically performed in the field under

time pressure, so the system must minimize computation time and user interface complexity.

Distilling these considerations into precise requirements is not possible without field testing.

To field test new SSC algorithms and methods, SAMPLAN was created as an evolutionary

prototype—flexible enough for rapid improvement but reliable enough for frequent use.

Algorithms and procedures are proposed by methodological experts, then refined in a design–

build–test–review feedback loop. Experience from the refining process is captured into

requirements, test cases, and documentation. Success of the prototyping exercise depends on how

well this experience is captured, how much the prototype improves in each iteration, and how

rapidly iteration can occur.

To strike the optimal balance between flexibility and reliability, the evolutionary prototype spans

the gap between research artifacts (demonstration scripts, white papers, spreadsheets) and

enterprise software. See comparison in Table I.

The evolutionary prototype currently supports both routine evaluations and advanced use cases.

Refer to the system dependency diagram in Fig. 1. Users (safeguards inspectors and some

evaluators) are assumed to not have scripting experience, so routine evaluations are supported by

a graphical user interface (GUI). The interface is implemented using a R Shiny library [3]. Shiny

usually creates web applications, but has been adapted here to self-update and launch on the user’s

personal computer. Screenshots from the GUI are included in later sections.

Routine Evaluations Advanced Use Cases

Shiny GUI R Scripts

SAMPLAN R Library

SAMPLAN C++ Library Relational Database

Figure 1. A conceptual diagram depicting how evaluations are supported by high-level

libraries, which in turn are supported by low-level libraries. Relational databases are

not used in SAMPLAN at this time.

TABLE I. Comparison between research artifacts, evolutionary prototypes, and

enterprise software.

Research

Artifacts
Evolutionary Prototype Enterprise Software

Code quality

Often messy;

evolves as

features are

needed

Code begins messy,

stabilizes, then cleaned
Clean

Testing & Data

QC

Limited, as

needed

Testbed to identify key

QC and tests

Comprehensive

coverage

Documentation
Limited, as

needed

Detailed documentation

added to cover process

and algorithms

Comprehensive

coverage

Version control

& peer review

Limited, as

needed

Increasingly formal as

field testing expands
Formal

Framework

Researcher choice

(Excel, VBA,

Python, SAS,

Matlab, R, …)

Scripting language

module with extension to

compiled languages,

SQL, GUI as needed

Enterprise standards

(e.g. formal C#, .net,

SQL Server projects)

Maintenance

Life

Temporary proof

of concept

Dozens of iterations

(until requirements

stabilize)

Stable long-term use

In addition to the GUI, evaluators can address advanced use cases using R, e.g. scripts, R

Markdown files, and the command line. The scripting interface is particularly powerful for

repeated function calls (as one often needs in sensitivity studies and algorithm testing). The

language R is primarily supported (to facilitate collaboration with statistical experts), but

evaluators have also demonstrated Python use via rpy2 [4].

Both the GUI and the scripts are built on the algorithms implemented in the SAMPLAN R library.

The library is deployed via an internally hosted package repository. SAMPLAN prototypers can

easily implement, locally test, and deploy small improvements in under an hour.

As functionality in the SAMPLAN R library matures, some portions are rewritten in C++. C++ is

more difficult to write and maintain than R, but vastly outperforms R for operations that cannot be

vectorized. Therefore not all functionality is planned to be migrated to C++; good candidates for

the C++ library are functions that are computationally intensive, difficult to vectorize within R,

and feature-stable.

When features are migrated to C++, the analogous R implementation is usually maintained as well.

The C++ implementation is preferred for routine use; the redundant R implementation facilitates

expert review and can be rapidly adapted for further research. The two implementations are kept

in sync using test cases, and maintenance effort is minimal for stable functionality.

One notes that pairing R with C++—or more broadly, pairing a flexible scripting language with

an optimized compiled language—is a design pattern common across disciplines. For example,

engineering modeling/simulation codes use Python to drive compiled C++ and Fortran modules

[5], often with script access to the Python library [6][7]. Similarly, many statistics and machine

learning toolkits are developed as Python or R wrappers for C++ libraries [8][9][10][11][12]. To

support projects like these, various toolkits have emerged to facilitate C++ interoperability with

Python [13][14][15] and R [16][17]. SAMPLAN is hardly the first project to use this design pattern,

and it is able to leverage a large collection of open-source tools to streamline prototype

development.

Alongside the SAMPLAN C++ library, a relational database could be used to stabilize and scale

certain operations. A lightweight internal database instance would be useful to prototype the

database schema needed for an enterprise implementation. Alternatively, the R code could run

read-only queries on externally maintained databases to collect parameters for SAMPLAN

calculations (as is done in other evolutionary prototypes maintained by the authors). Neither

database approach has been necessary for SAMPLAN prototyping yet. However, the SAMPLAN R

library uses database-like table structures to facilitate later conversion to a formal database.

As Table I suggests, SAMPLAN is now maturing even as new methods are added. Test- and

documentation-coverage are rapidly rising, and the version control system was recently upgraded

from automated snapshots to a git [18] repository. Functionality is migrated to (or removed from)

the GUI and C++ library in response to user feedback.

Through testing on dozens of real-world use cases, powerful new safeguards capabilities have been

created.

3 SAMPLAN CAPABILITIES

SAMPLAN functions like a typical desktop application: The user can launch the GUI with a click;

updates are automatically installed (if the package repository can be reached); inputs can be saved

and loaded; integrated demonstration files can be loaded to review training cases.

Within this framework, DP and SSC modules applicable to various safeguards use cases can be

implemented. Three modules are currently implemented:

• an overhaul of the Basic SSC, also known as the Nested Sampling Plan, used for most

safeguards sample size calculations;

• the new Multi-Stratum DP algorithm [19], to evaluate DP for diversion scenarios spanning

multiple strata, implemented in support of the State-Level Approach Improvement Project

(SLAIP) [20]; and

• the new TRIPS algorithm [21], to plan and evaluate randomly scheduled inspections, also

implemented in support of the SLAIP.

An additional two modules are planned:

• an update of the Two-Stage SSC, for verification methods that randomly select a number

of items, then randomly select a number of sub-items from each selected item and

• an update of the Follow-up SSC, to determine verification actions in the event that a

defective item is identified.

The predecessor software implemented these capabilities as separate applications, but their

integration in SAMPLAN allows the modules to leverage capabilities from one another. For

example, the Multi-Stratum DP module now uses the strata and settings specified in the Basic SSC

module. This means that the advanced features of the Basic SSC module (described below)

automatically flow into multi-stratum calculations.

Of the three currently implemented modules, only the Basic SSC has not been described in earlier

publications, so its significantly expanded capabilities are discussed in depth here.

3.1 “Basic” SSC Capabilities in SAMPLAN

The Basic SSC is most commonly used for safeguards. It models a scenario in which up to three

methods of varying precision are used to verify a stratum of multiple similar objects; refer to Refs.

[19] for further details. The GUI for this SSC is shown in Fig. 2.

On the Input panel, users enter information about the stratum being verified. Refer to the list of

fields in Table II. These fields are analogous to fields in the predecessor SSC software, and

SAMPLAN can import predecessor files. However, the SAMPLAN fields have been adapted to avoid

manual calculations. For example, inspectors currently must calculate beta by looking up the

verification level (usually RH, RM, or RL), interpreting it as a probability (0.9, 0.5, or 0.2), then

subtracting from one (0.1, 0.5, or 0.8). SAMPLAN simply requires the verification level. The

SAMPLAN fields and the predecessor equivalent are compared in Table II. Crucially, SAMPLAN

minimizes the manual calculations necessary during time-sensitive inspections.

Figure 2. An overview of the SAMPLAN Basic SSC GUI. For the Enriched 30B cylinders stratum, the Input, Results, and

Declaration Summary panels are shown. The Plot panel is collapsed here but will be shown in a later figure. Image has been

edited to remove confidentiality warnings and reduce whitespace.

In addition to these predecessor-like input fields, new fields have been added. For example, the

new “Balanced” algorithm can use non-Gaussian measurement error models, e.g. a step function

of the number of defects. Most users do not need to use these advanced options; they can simply

leave the advanced options box unchecked and use widely applicable defaults.

From these inputs, SAMPLAN calculates sample sizes for each instrument. SAMPLAN offers multiple

sampling plans because there is no single “best” plan. Any plan that achieves the required DP is

considered valid, and the inspector’s preference among these depends on various operational

TABLE II. A comparison of Basic SSC inputs (SAMPLAN vs predecessor).

SAMPLAN

Field
Description Predecessor Equivalent

RSDs

Relative Standard Deviation: Estimated

uncertainty of each verification

instrument. RSD is expressed as a decimal

(not percent) in keeping with safeguards

conventions.

Same as SAMPLAN, but labeled

delta.

Verification

Level

Detection Probability required by the

state-level approach, usually Random

High (90%), Random Medium (50%), and

Random Low (20%). Arbitrary

percentages can be entered for other cases.

Inspector must calculate beta:

one minus the verification level

(e.g. 0.1, 0.5, or 0.8).

Material

Type

One of LEU, HEU, Pu, etc, which defines

the Significant Quantity (SQ) amount and

measurand (U mass, 235U mass, Pu mass,

etc). Arbitrary amounts can be entered for

unforeseen cases.

Inspector must enter the

divertor’s goal corresponding to

1 SQ: 75 (kg 235U) for low-

enriched uranium, 20000 (kg U)

for depleted uranium, etc.

Declared as

Whether the material is declared as

inventory, outbound shipments, or

inbound receipts.

Inspector must select Und for

receipts and Ovr for inventory

and shipments.

Total Mass

The total mass of the specified isotope can

usually be copied from the Itemized

Inventory Listing.

Inspector must calculate and

enter the mass per item.

Number of

items

The number of declared items in the

stratum.

Same as SAMPLAN, but labeled

N.

Unverified

mass

The mass in the stratum that is

inaccessible for verification. Per

safeguards procedure [23], the user sums

all unverifiable mass with the same

Material Type. QC ensures that unverified

mass is consistent across strata.

No equivalent field; the inspector

must manually total the

unverifiable material across

strata and subtract it from the

“goal” (see above).

considerations. Therefore the inspector may choose to use the plan calculated by the “legacy”

algorithm (which replicates the predecessor software), one of multiple new constrained

optimization algorithms (to be described in upcoming publications), or even enter a custom plan.

Entering a custom plan allows the user to check its effectiveness in terms of DP, which is important

for planning around instrument failures and for post-inspection DP evaluation. This DP-

calculation capability was not possible with the predecessor inspector software; a separate DP

application was used by evaluators.

High-priority notes and warnings are listed below the sampling plan, and additional diagnostics

are available at the right edge of the GUI. The Declaration Summary echoes input information

about the number of items, SQ definition, etc., which helps the user confirm that the inputs were

correctly figured and entered.

Below the Declaration Summary, the DP is plotted across a spectrum of diversion scenarios. See

Fig. 3. This plot is very important because it shows whether the selected plan is effective. (The

Figure 3. A detail of the Plot portion of the SAMPLAN Basic SSC GUI. The black

markers plot the achieved DP (vertical axis, transformed so 𝑙𝑜𝑔(1 − 𝐷𝑃) is linear) for

each considered diversion scenario. The diversion scenario is characterized by the

number of defective items from which material is diverted (horizontal axis, logarithmic

scale). A red X indicates that the achieved DP is less than the required verification

level (green line), and therefore the plotted sampling plan is not effective. The shaded

contours estimate the DP if each H (green), F (blue), and DA (red) sample were

sequentially removed. In this example, the contours indicate that all three methods are

equally effective for gross defects (left edge), but methods H and eventually F lose

effectiveness as the number of defects increases. Image has been edited to remove

confidentiality warnings.

plan is valid if the red/black DP points are all above the green VL line.) Similar plots are used in

the predecessor software and SSC training, but in SAMPLAN the plot is interactive and exportable.

Importantly, the SAMPLAN DP plot introduces a new “nonlinear y-axis” transformation that makes

the DP appear to “stack up” as samples are added. The thickness of each sample indicates its

effectiveness for that diversion scenario. With this visual guide, the user can rapidly find a

custom plan that is both effective, efficient and, practical.

In addition to these improvements, various experimental features have been demonstrated in the

SAMPLAN Basic SSC for research purposes. For example, a correction has been proposed to deduct

the false-alarm rate from the DP, and a stochastic DP calculation has been demonstrated to account

for covariance effects. These capabilities are not intended for safeguards use (yet), but their

implementation in SAMPLAN will enable testing on real use cases.

4 CONCLUSIONS

SAMPLAN is an evolutionary prototype for DP and SSC calculations, spanning the gap between

early plans and enterprise software development. The algorithms are implemented in R and C++

but can be used via a GUI or scripting interface. The prototype uses off-the-shelf open-source

frameworks and well-established design patterns. This allows revisions to be implemented and

fielded within hours, not days, so the new methods can rapidly mature.

To date, three modules have been prototyped in SAMPLAN: a new multi-stratum DP algorithm,

planning/evaluation algorithms for randomly scheduled inspections, and improvements of the

routinely used SSC. This paper focuses on the latter, and highlights three improvements. First,

inputs have been reformulated to minimize the need for manual calculations in the field. Second,

inspectors can now assess alternative sampling plans in the field. These alternative sampling plans

can be calculated with advanced settings, including non-Gaussian error models. Third, improved

DP visualization enables inspectors to rapidly improve alternative plans. These improvements will

enable inspectors to use safeguards resources as efficiently as possible while continuing to conduct

effective verification activities.

5 ACKNOWLEDGEMENTS

The authors wish to acknowledge IAEA safeguards evaluator Sandrine Cormon for demonstrating

Python access of the SAMPLAN R library.

6 REFERENCES

[1] International Atomic Energy Agency (1972). The Structure and Content of Agreements Between the Agency

and States Required in Connection with the Treaty on the Non-proliferation of Nuclear Weapons (INFCIRC

153, corrected). Vienna, Austria.

[2] IAEA, “Statistical Concepts and Techniques for IAEA Safeguards,” IAEA SG-PR-2016 Rev. 5, 1998.

[3] Chang W, et al. (2023). shiny: Web Application Framework for R. R package version 1.7.4.9002,

<https://shiny.rstudio.com/> accessed 2023-03-22.

[4] Rpy2 - R in Python. <https://rpy2.github.io/> accessed 2023-03-21.

[5] VERA 4.1 (RSICC code package CCC-855). <https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-855.html> accessed

2023-03-22.

[6] ADVANTG 3.2.0 (RSICC code package CCC-831). <https://rsicc.ornl.gov/codes/ccc/ccc8/ccc-831.html>

accessed 2023-03-22.

[7] PyNE: The Nuclear Engineering Toolkit. <https://github.com/pyne/pyne> accessed 2023-03-22.

[8] PyTorch. <https://pytorch.org/> accessed 2023-03-22.

[9] TensorFlow. <https://www.tensorflow.org/> accessed 2023-03-22.

[10] Keras: Deep Learning for humans. <https://keras.io/> accessed 2023-03-22.

[11] Riddell, A., Hartikainen, A., & Carter, M. (2021). PyStan (3.0.0). <https://pypi.org/project/pystan> accessed

2023-03-22.

[12] RStan. <https://github.com/stan-dev/rstan> accessed 2023-03-22.

[13] Boost.Python. <https://www.boost.org/doc/libs/1_81_0/libs/python/doc/html/index.html> accessed 2023-03-

22.

[14] SWIG. <https://www.swig.org/> accessed 2023-03-22.

[15] Cython: C-Extensions for Python. <https://cython.org/> accessed 2023-03-22.

[16] RTools: Toolchains for building R and R packages from source on Windows. <https://cran.r-

project.org/bin/windows/Rtools/> accessed 2023-03-22.

[17] Eddelbuettel, D., et al. Rcpp: Seamless R and C++ Integration version 1.0.10. <https://cran.r-

project.org/web/packages/Rcpp/index.html> accessed 2023-03-22.

[18] Git. <https://git-scm.com/> accessed 2023-03-22.

[19] Bevill, A., et al (2021). Multi-stratum Detection Probability Calculations for IAEA Safeguards: Foundations

and Early Progress. Proceedings of the INMM & ESARDA Joint Annual Meeting.

[20] Sylvester, K. (2021). Experience Gained in the State Level Approach Improvement Project. Presented at

INMM & ESARDA Joint Annual Meeting.

[21] Krieger, T., et al (2021). Random Inspection Planning for Misuse Detection in Safeguards. Proceedings of the

INMM & ESARDA Joint Annual Meeting.

[22] Krieger, T. et al (2017). “Statistical Methods for Verification Sampling Plans,” IAEA STR-381 draft, 2017.

[23] Safeguards Criteria: Procedures for Sampling Plans. IAEA document SG-SC-Annex-06 version 2, 2009-09-

02. See specifically paragraph 3.2.

