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ABSTRACT 
We present a dataset for enabling the use of deep learning for understanding the state of operating 
machinery. This dataset includes voltage and vibroacoustic measurements taken in a phase-locked 
fashion on a variety of common office and lab equipment.  All included equipment connects to the wall 
via standard electrical cords with a strong emphasis on small hand tools. The distribution package 
includes the raw voltage and vibroacoustic data, the metadata, a Jupyter notebook that trains and 
evaluates a baseline deep learning model for performing useful sample tasks (e.g., building a classifier to 
determine if a single piece of equipment is on or off), a modifiable PyTorch dataloader, and a file to 
build an appropriate python environment.  Using these tools, the next generation of data science 
practitioners can work toward newer and better approaches specifically for analyzing and understanding 
signals from operating machinery. 
 
INTRODUCTION 

Recent advances in artificial intelligence are truly impressive, especially for text and image data 
modalities.  These advances are due in part to publicly available open-source text and image datasets 
[1]. Harnessing the full power of artificial intelligence, machine learning, and deep learning for more 
accurate, useful, and nuanced safeguards capabilities will require carefully curated datasets for 
technique development.  Unfortunately, to date publicly available datasets specific to safeguards have 
been severely lacking or entirely absent. Here we present a new dataset constructed to help fill this gap.  

We construct and distribute this dataset with two goals in mind.  First, the overall meta-goal is to 
generate a methodology that produces datasets for new modalities relevant to the non-proliferation 
mission that are optimized for usefulness with data science techniques.  To make progress toward this 
meta-goal, the more proximate goal is to develop and demonstrate this methodology by generating, 
procuring, compiling, cleaning, modeling, and distributing datasets incorporating carefully chosen 
modalities of interest to safeguards.  Once assembled, this dataset needs to be useful for algorithmic 
development, algorithmic comparison, and transfer learning. We take these requirements into 
consideration as well as ensuring that the final dataset will be relevant to safeguards when choosing 
data collection schemes and modalities. 
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Algorithmic Development: Designing a dataset to be relevant for machine learning model development 
places a heavy burden on the selection of data. Traditional methods for building a dataset start by 
identifying a relevant problem and then collecting the data that would be required to solve that 
problem. Generally, doing so has one of two outcomes: (1) the chosen problem is unexpectedly 
extremely easy such that all classifiers correctly identify the solution, or (2) the chosen problem is 
unexpectedly extremely difficult such that no classifiers correctly identify the solution. These scenarios 
are depicted in Figures 1a and 1b. The left-hand column shows datasets arranged by difficulty of 
separating the classes from one another (in this case using signal-to-noise ratio to denote difficulty). The 
right-hand column shows models arranged by capacity and capabilities. By starting with a single dataset 
and taking all the data at that difficulty, the results are suboptimal in both cases. In the ‘easy’ case, a 
very simple model can separate the data and more advanced models that would have led to improved 
capabilities are not leveraged against the problem because there is no motivation to do so or means to 
discriminate between the model selected and more refined models. In the ‘hard’ case, the data is so 
difficult to model that it requires multiple leaps beyond the state of the art. Because all classifiers 
perform very poorly, it is extremely difficult to make progress toward a performant classifier. It is likely 
that performant classifiers will not be found and therefore there will be no gains in capabilities. 

There is, however, another possible paradigm for taking data that doesn’t suffer from these difficulties. 
Naïve data taking started with a selected problem and the simplest possible approach because the 
problem itself was interesting and proceeded to work upwards in model complexity. Disciplined, 
capability-maximizing data taking instead starts with a model selected because it is interesting, well-
benchmarked, matched to the hardware, and matched to the application and a very simple version of 
the problem to take data against. As the model shows capacity to extract meaningful features and do 
meaningful classification the difficulty of the problem is increased until the model can no longer 
succeed. At this point, there is a phase of alternation between increasing the complexity of the model 
and increasing the difficulty of the dataset until no model can succeed. Thus, the dataset produced at a 
slightly higher difficulty than can be solved by the most advanced model provides the most interesting 
problem to develop new models against. In addition, all the datasets produced along the way are 
extremely useful for testing new models or for transfer learning to the difficult problem. Disciplined, 
capability-maximizing data taking is depicted in Figure 2. Put succinctly: You don’t know what data is 
most valuable to take until you start analyzing it! 

 

Figure 1 a,b. Naïve data taking paradigm applied to (a) a problem that is too easy (too rich in signal) and 
(b) too hard (too little signal) 
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Figure 2. Optimal data taking paradigm where a series of data collects are taken and validated by a 
model until eventually dataset complexity increases drive model development 

 

Algorithmic Comparison: A high-quality shared dataset is a powerful instrument for community 
building. By virtue of being publicly available, high-quality, and of an appropriate difficulty, the dataset 
draws together the community of researchers to coordinate around a common problem. Well-known 
examples of this behavior include the widespread usage of the MNIST [2] handwriting dataset and the 
CIFAR [3] and ImageNet [4] image datasets. One of the major advantages to working on such a dataset is 
that the data cleaning and data engineering tasks (often regarded as most of the work on data science 
problems) can be performed before the data is distributed and thus eliminated for the researchers. 
Furthermore, because all researchers are working with data in the same structure and format, code-
sharing and collaboration becomes significantly easier.  This also significantly reduces barriers to 
reproducibility (a major issue with data science in many hard science fields). Finally, having a common 
task and shared evaluation metric makes it possible to compare approaches in an apples-to-apples 
objective fashion. This makes it much simpler to identify promising lines of inquiry, both for individual 
researchers and funding organizations. 

Transfer Learning: One of the most powerful results in the machine learning field has been that pre-
training on large, diverse datasets yields a meaningful and sometimes tremendous improvement for 
models trained on smaller datasets for a related, but usually more bespoke task. If shared datasets are 
large, rich in features, and well aligned with interesting problems, we believe it will be possible to use 
them for pretraining to obtain better classification accuracy on the interesting problems. In the 
safeguards space there are often limitations to how similar a distributed surrogate dataset can be to 
interesting problems and thus, for many modalities transfer learning will not be feasible; however, for 
many modalities, it is possible to produce data on a surrogate problem not at all related to controlled 
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information but nonetheless spanning a wide enough set of features that pretraining using the data is 
useful. 

BACKGROUND 
The modality selected for initial investigation was a fused dataset consisting of EM/RF collected by 
measuring voltage and vibroacoustic data collected with a laser vibrometer.  These are complimentary 
modalities because both the acoustic waves and the EM/RF signatures originate from common sources 
in the circuitry.  Thus, in collecting the modalities together the user is provided with two individual data 
sets for the modalities which are useful on their own in addition to the fused dataset.  Because there is 
mutual information in the data streams, clever algorithms should be able to use them together to 
achieve accuracy and robustness that a single modality alone would be unable to achieve.  Thus, the 
community is incentivized to create and compare algorithms for data fusion which may be applicable to 
a wide array of other useful tasks. 

There are many different safeguards motivations for wanting to monitor the state of equipment.  
Preventative maintenance applications make it possible to identify equipment operating outside of a 
normal envelope and act to make repairs before the equipment fails and induces down-time.  Non-
intrusive load monitoring applications makes it possible to measure and understand the state history of 
a piece of equipment.  This is useful for process controls, maintenance, and for cooperative safeguards 
matching true usage to declared usage for that equipment.   

TECHNICAL APPROACH 

The data was gathered in 5-minute segments.  Each device was allowed to obtain steady state and then 
data was captured for 5 minutes.  Following that, as soon as feasible 5 minutes of data was collected 
with the device off.  This was done to minimize on/off differences in background in adjacent segments.  
3 rounds of on/off segments were captured for each device with the intent of two segments being used 
for training/validation and a third segment to serve as test data.  All data was gathered using a Saleae 
Logic Pro 16 [5]. The sample rate of the Saleae was 1.56 MS/s/channel.  The EM/RF data was gathered 
by taking power from the wall socket and using a voltage divider box to generate a hot-neutral, hot-
ground, and neutral-ground channel and connecting them all to the Saleae DAQ.  The vibroacoustic data 
was gathered using a Polytec VibroFlex Xtra [6].  Data channels for the displacement, velocity, and 
acceleration were routed from the laser vibrometer into the Saleae DAQ.  Because the signal 
magnitudes were so different, the laser vibrometer settings had to be recalibrated for each device.  The 
same settings were used for all ‘On’ and ‘Off’ captures for each device.  The point for the vibroacoustic 
laser was marked in sharpie on each device so that it was consistent across captures.  The devices were 
affixed to the work bench such that the operation orientation could be consistent. 
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Figure 3. List and images of the equipment used in the dataset  

RESULTS 

The data and code for training and evaluating a baseline model from our first data collection campaign 
contains 5 main components/component types: 

Ds2eda_environment.yml – This contains a list of dependencies for the python environment.  Conda 
can automatically generate a suitable environment for running the rest of the code using this file.   

Dataloaderotf.py – This contains the code for the dataloader which makes spectrograms from raw 
waveforms.  The data is stored in waveforms and the code generates spectrograms for use by a machine 
learning model as inputs to the network on the fly.  As such, the code is configured to use multiple CPUs 
to build batches fast enough to keep pace with the GPU. 

Measurements_Summary_Metadata.pdf – This contains all the equipment settings and all the 
metadata associated with the data capture.  Metadata of note includes item name, serial number, 
model, brand, description, time of the collections, and a long list of relevant laser vibrometer settings. 

Equipment_State_Date_Time.hdf5.zip - Data files for all equipment in all states in all repetitions.  Data 
is stored in the hdf5 format and contains 6 channels – 3 EM/RF followed by 3 Vibroacoustic.  For details, 
see the associated notebook. 

SpectrogramResNet.ipynb – This contains a Jupyter notebook that includes tutorials, comments, and 
code illustrating the process of building and analyzing a baseline classifier. Raw data is loaded and a 
tutorial describing how the raw multi-channel signals are converted into spectrograms is shown, 
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including flexibility to adjust the input parameters to the spectrograms. Some example raw data and 
associated spectrograms are visualized to give the user a better intuition about the problem. The 
notebook then walks through setting up and training a ResNet50 (neural network) for predicting 
instrument type in PyTorch using a custom dataloader. Then, we provide some additional code 
illustrating how to evaluate the trained model on a test set, including comparing to baseline accuracy 
and displaying a confusion matrix so the user can gain a better understanding of the trained model’s 
behavior. Finally, the notebook concludes with some suggestions and exercises for the user as to 
additional ways to explore the baseline model behavior and how the baseline model might be further 
improved. The baseline model is intentionally left with room for improvement as an educational tool. 
Depending on the available computing hardware, running the entire notebook end-to-end takes on the 
order of a few hours.  

Baseline Model Performance 
The ResNet50 baseline model provided along with our dataset performs decently well on the suggested 

task but does have room for improvement. This gap is intentional so that the code we provide can be 

used as an educational tool for the user to familiarize themself not only with the data but also with data 

science techniques. We modify the pre-trained ResNet50 to accept a 5-channel input (one of the 

calculated vibroacoustic channels is found to exhibit numerical instability). The baseline model uses 

spectrograms generated using nperseg of 2000, nfft of 5625, and an FFT width of 224*2000 so that the 

spectrogram image sizes match the image size expected by the pretrained ResNet50. We fine-tune the 

ResNet50 over 10 epochs with a batch size of 10, 5,000 samples in the training set, 1,000 samples in the 

validation set, and 1,000 samples in the test set.  The test and train/val sets do not overlap; the test data 

comes from the first portion of the data collect (1st repetition), which the train/val data is sampled from 

the later data collects (2nd and 3rd repetitions). The baseline model is trained to classify which instrument 

is turned on or if all instruments are off. We find that this model achieves an average training accuracy 

of 99%, an average validation accuracy of 96%, and an average training accuracy of 83%.  Figure 4 

depicts the basic model processes.  Figure 5 shows one set of time-correlated spectrograms for the 

EM/RF and Vibroacoustic measurements.  

 

Figure 4. Block diagram of the data to classification pipeline 
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 Figure 5. Sample data from roughing pump Agilent IDP7 

NEXT STEPS 

Following the generation, compilation, cleaning, modeling, and distribution of this initial dataset, 
subsequent efforts will focus on obtaining new data with appropriate modeling complexity for 
continued model development.  Because of the relatively accurate performance of unsophisticated 
models in classifying the data, subsequent data will aim to reduce the quality of the signal being emitted 
by the devices.  To this end, the project has constructed tunable circuits aimed at power conditioning to 
blunt the EM/RF signal and has identified new locations for gathering the vibroacoustic signal from 
which the expected signatures will be reduced. 
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