
Proceedings of the INMM ESARDA 2023 Joint Annual Meeting

Application of machine learning with data encoding techniques to

predict stratum-level DP

Lohith Annadevula1, S. K. Aghara1

1University of Massachusetts Lowell, Lowell, MA, USA

ABSTRACT

The International Atomic Energy Agency (IAEA) employs well-established statistical methods to

assess the effectiveness of its inspection plans on a multi-defect stratum by evaluating defect detection

probability (DP). DP is defined as the chance of identifying at least one defect when a defective

stratum is subjected to a specific inspection plan. So far, deterministic methods using statistical

distributions and a stochastic method using pseudo-random generators have been developed to

compute DP within some finite time. The stochastic method is universally applicable to any inspection

scenario, and it can generate DP results with user-specified standard error. Initial attempts were made

to train machine learning (ML) models on the stochastic DP results and their respective inspection

parameters to predict DP. Inspection parameters like item types, instrument types, and identification

probabilities vary in length depending on the applied diversion strategy and inspection plan. These

variable length parameters pose a major challenge in developing ML models, which require a fixed

number of input parameters for training and prediction. The paper explores two ways to convert

variable-length parameters to a fixed number of parameters; these are zero-padding and encoding

techniques. Zero-padding limits the applicability of models to a few inspection scenarios limiting the

variable length parameters to a fixed length, and zeros are used for missing information. On the other

hand, Encoding techniques do not limit the model applicability; instead, perform certain operations

on the variable length parameters to generate new encoded data with fixed parameters that are used

to train ML models. The paper discusses the zero-padding scheme and two different data encoding

techniques and compares the performances of ML models trained on said techniques. The R2 scores

of zero-padded models and encoded models are evaluated on unseen instances of the test dataset.

Upon comparison, show the superior generalization power of encoded models over zero-padded

models in predicting DP.

INTRODUCTION

The IAEA’s comprehensive safeguards agreement [1] (CSA) obliges a nuclear state or country to

subject its nuclear materials inventory to IAEA safeguards operations. The safeguards operations

allow IAEA to achieve its technical objective [2] of detecting and deterring nuclear material diversion

from peaceful purposes to military use. The nuclear inventory of a state is spread among its nuclear

facilities and is reported to IAEA by the state, organized as nuclear strata with items/batches based

on similar characteristics like material type, physical state, etc. As part of safeguards operations,

IAEA uses a combination of nuclear material accountancy data with surveillance, seal checks, and

random inspections to ensure the reported material matches the material present in the strata. Owing

to the impracticality of inspecting every item in a stratum, random inspections of a fixed number of

items (sample size) are carried out instead based on a specified inspection plan. These inspections

involve randomly selecting a specified number of items from the stratum and identifying defects

(items from which material has been removed) in the selected items using the instruments and

methods specified in the inspection plan. Each inspection plan has a certain chance of identifying the

defects in the stratum called defect detection probability (DP).

The DP is defined as the probability of identifying and detecting at least one defective item

when a defected stratum is subjected to a specific inspection plan. DP acts as an effectiveness metric

of the IAEA inspection plans and allows IAEA to develop and optimize their inspection plans

depending on the anticipated diversion strategies and probable pathways. The diversion strategy is

defined as the mechanism by which the proliferator would divert a certain amount of nuclear material

(SQ) from the items within a stratum, thereby introducing defective items within the stratum.

Depending on the applied diversion strategy, the original items in the stratum inventory are converted

into defects of various types and numbers. The IAEA employs models to evaluate the probability of

detecting these defects (DP) when an inspection plan is applied to the defected stratum. Figure 1

contains two limiting case diversion strategies that will be used in this paper.

Figure 1. IAEA limiting case diversion strategies

The IAEA’s random inspection process is modeled as random selection and defect identification

stages. In the random selection stage, there is a chance of selecting at least one defective item when

a certain number of items are randomly sampled from the entire stratum. This chance is called defect

selection probability (SP). Its value increases with the number of defects in the stratum or increases

with the number of randomly selected items (sample size) from the stratum. In the defect

identification stage, the selected items or item is subjected to instrument measurements. There is a

chance associated with identifying the measured item as a defect called defect identification

probability (IP). IP depends on the instrument or method’s response curve and the associated

parametric uncertainties like relative standard deviations (RSDs). Hence, the defect detection

probability DP is a function of defect selection probability SP and defect identification probability IP.

In safeguards literature, the evaluation of DP is traditionally achieved case-by-case using statistical

distributions [3]. Recently, two universal DP models were developed, one deterministic and one

stochastic model, that can evaluate DP for any inspection scenario and diversion strategy. The

deterministic model [4] evaluates DP, equation (1), for each probable out determined using the

conditional tree diagram. Whereas the stochastic model [5] uses pseudo-random generators and

equation (2) to evaluate DP.

Deterministically, DP = ∑ 𝑺𝑷𝒊

𝒊 ∈ 𝑨𝒍𝒍 𝑺𝒆𝒍𝒆𝒄𝒕𝒊𝒐𝒏 𝑶𝒖𝒕𝒄𝒐𝒎𝒆𝒔

∗ 𝑰𝑷𝒊 (1)

Stochastically, DP =
𝟏

𝑵
∑ 𝑰𝑷𝒊

𝒊 ∈ 𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅 𝑶𝒖𝒕𝒄𝒐𝒎𝒆𝒔

 (2)

In existing safeguards literature, the usage of machine learning in predicting DP hasn’t been explored

before. The main reasons for exploring machine learning for DP prediction are that ML prediction

models tend to be faster than deterministic or stochastic models. Once trained, an ML model with

reliable accuracy can be used in mobile apps to provide field inspectors with faster and reliable

predictions. The paper describes the initial attempts, associated problems, and solutions to predict DP

using various machine-learning regression techniques.

OVERVIEW OF ML CONCEPTS

The stratum-level detection probability (DP) is a continuous-valued probability function with values

ranging from 0 to 1. The ML methods that predict a continuous value based on an input or multiple

input parameters fall under Regression methods. Table 1 contains descriptions of various regression

ML methods available as open-source classes in Python’s sci-kit learn [6] and xgboost [7] modules.

Table 1. Various regression-based ML methods from sci-kit learn and xgboost modules

S.No ML Methods Description Explored Hyperparameters

1.

Ordinary Least Squares
method

(OLS)

OLS method is a global minimum method that will provide a

unique set of model parameters obtained by minimizing the sum of
squares of residuals.

N/A

2.

Linear Non-Linear
methods

(LNL)

In linear/non-linear methods, the input parameters (xi) are directly
mapped to output parameter y as follows:

𝑦 = 𝑤0 + ∑ 𝑤𝑖𝑓(𝑥𝑖)

Linear or Identity: Linear bottleneck f(x) = x

Logistic: the logistic sigmoid function f(x) = 1/(1+exp(-x))

Tanh: the hyperbolic tan function f(x) = tanh(x)

Relu: the rectified linear unit function f(x) = max(0, x)

N/A

3.
Deep Neural Network

(DNN)

In DNNs, the input layer (xi) is mapped to the output layer y via

multiple (at least two) hidden layers of interconnected neurons. The

hidden layer neurons use relu activation, and the final layer uses
identity activation.

Hidden layers and neurons:

[(), (17), (17, 17), (17, 17, 17), (34),

(34, 34), (34, 34, 34), (51), (51, 51),

(51, 51, 51), (68), (68, 68), (68, 68,
68), (85,85, 85, 85)]

4.

Support Vector

Regression

(SVR)

SVR aims to find a hyperplane that best fits the observed data

within user-specified residual parameters such as allowed error
margin ‘e’ and tolerance ‘C’ to values outside margins.

Kernel: [‘linear’, ‘rbf’, ‘poly’]
C: [1, 1.5, 10]

Gamma: [1e-7, 1e-10]

Epsilon: [0.01, 0.5, 10]

5.

Gradient Boosting
Regression

(GBR)

GBR is a tree-based boosting ensemble technique that iteratively

builds new tree estimators to cover the shortcomings of estimators
in the previous iteration. A tree can be summarized in simple terms

as nested if-else conditions made of input parameters along with an
assigned output value.

Learning rate: [0.5, 0.1, 0.05]
No of estimators: [100, 300, 500]

Max Tree Depth: [3, 6, 9]

6.

Extra Gradient Boosting
Regression

(XGBR)

XGBR is also a tree-based boosting ensemble technique like GBR,

with added features like regularization, tree pruning from the max
depth, missing value handling, etc.

Learning rate: [0.5, 0.1, 0.05]

No of estimators: [100, 300, 500]

Max Tree Depth: [3, 6, 9]

 Table 2 describes various metrics to train ML models and evaluate model performances. The

SSR, MAE, and RMSE are suited for both training and performance evaluation. It is customary to

generate two datasets, each with unique instances. The instances from the first dataset are used for

training various ML models and validating their performances during training. The unseen data

instances from the second dataset are then used to test the generalization capabilities of trained models

by evaluating their performance metrics.

Table 2. Formulae and description of various ML metrics.

S.No Metric Formulae and Description

1. Residual 𝑅𝑖 = 𝑦𝑖 − �̂�𝑖

2.
Sum of Squares Residual

(SSR)

𝑆𝑆𝑅 = ∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

SSR takes values from 0 to +∞. The smaller the value

of the SSR, the better the model's performance.

3.
Mean Absolute Error

(MAE)

𝑀𝐴𝐸 =
∑ |𝑦𝑖 − �̂�𝑖|𝑁

𝑖=1

𝑁

MAE takes values from 0 to +∞. The smaller the value

of the MAE, the better the model's performance.

4.
Root Mean Square Error

(RMSE)

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1

𝑁

𝑅𝑀𝑆𝐸 takes values from 0 to +∞. The smaller the value

of the 𝑅𝑀𝑆𝐸, the better the model's performance

𝑤ℎ𝑒𝑟𝑒,
𝑦𝑖 = actual label value of ith instance

�̂�𝑖 = predicted label value of ith instance

k-fold Cross-validation (k-fold CV)

During training, any ML method has multiple parameters that can be varied, which might

either improve or worsen the performance. The process of varying parameters in search of a better

model is called hyper-parametric tuning. Due to the stochastic nature of solvers and the random initial

weights and coefficients, during development the resulting model using the same hyper-parameters

will differ with varied performances. To quantify and reduce the variance of performance metrics, a

data sampling technique called k-fold cross-validation [8] is used. This approach involves randomly

dividing the training dataset into k groups of approximately equal size. In the first iteration, the first

fold is treated as a validation set, the model is fit on the remaining k − 1 folds, and performance is

evaluated on the first fold. Similarly, models are trained and evaluated for each fold, and k

performance metrics are quantified and plotted with mean and standard error. This approach allows

better quantification and comparison of performances across various ML algorithms. When combined

with hyper-parametric tuning, the k-fold CV method provides a mechanism to identify the optimal

parameters within the ML algorithm with the highest performance. In general, with the choice of k in

k-fold cross-validation, there is a bias-variance trade-off associated with it. It is typical to choose 5

or 10 as the value for k, as these values have been shown empirically to yield performance metrics

that suffer neither from excessively high bias nor very high variance [8].

EXPLORED METHODOLOGIES AND THEIR WORKINGS

This section explores the application of various machine-learning techniques in predicting the

stratum-level DP. Table 3 contains all the parameters or features taken as the inputs by universal DP

models [4,5]. The same parameters are used to develop ML DP models to predict DP. Generally, ML

models use constant number of inputs parameters. The dimensions of DP input parameters such as

measurement type numbers, item type numbers, and identification probabilities vary depending on

the applied diversion strategy and inspection plan. This poses a challenge to develop a ML-based DP

models. Two different approaches are considered here to address this difficulty. The first approach

uses zero padding to fix the number of input variables, and the models developed using this approach

are called zero-padded models. The second approach uses encoding techniques to fix the number of

input variables, and the models developed using this approach are called encoded models.

Table 3. Inputs and output parameters for developing ML DP models

S.No Parameter Type, Dimensions, Range Feature/Label

1. Total Items (N) int, 1, [0, ∞) Input Feature

2. Total Measurements (n) int, 1, [0, N] Input Feature

3.
Measurement type numbers

(n1, n2, …, nm)

Integer array of size m,

∀ 𝑛𝑖 ∈ [0, 𝑛]

∑ 𝑛𝑖

𝑚

𝑖=1

= 𝑛

Input Feature

4.
Item Type numbers

(I1, I2, …, Ik)

Integer array of size k,

∀ I𝑖 ∈ [0, 𝑁]

∑ 𝐼𝑖

𝑘

𝑖=1

= 𝑁

Input Feature

5.

Identification Probability Matrix

IP m by k

(

IP11 IP12 ⋯ IP1k

IP21 IP22 ⋯ IP2k

⋮
IPm1

⋮
IPm2

⋱
⋯

⋮
IPmk

)

Probability matrix of
dimensions k by m

∀ IP𝑖𝑗 ∈ [0, 1]
Input Feature

6.
Stratum-level Defect Detection

Probability (DP)

Probability value

𝐷𝑃 ∈ [0, 1]
Output Label

 The zero-padding and encoding procedures to convert variable input features of Table 3 into

a fixed number of features for DP model development are described next.

Zero-padding

Zero-padding limits the problem to a few scenarios by fixing the length of parameters and

using zeros for missing parameters. The number of item types ‘k’ and the number of instrument types

‘m’ vary depending on the inspection scenario. Here we limit the problem to scenarios that yield three

item types and three instrument types by fixing ‘k’ and ‘m’ to 3. Table 4 describes the zero-padded

parameters obtained by imposing this constraint to the problem. A total of 17 features are evaluated

from zero-padded parameters and used as inputs for the ML models to predict DP. During the data

generation process, the scenarios with missing item or instrument type entries are replaced with zeros;

hence, the name zero-padding.

Table 41. Constraining variable length parameters for developing zero-padded models

S.No Original parameters Zero-padded parameters No. of features

1. Total Items (N) Total Items (N) 1

2. Total Measurements (n) Total Measurements (n) 1

3.
Measurement type numbers

(n1, n2, …, nm)

m is set to 3

Measurement type numbers

 (n1, n2, n3)

3

4.
Item Type numbers

(I1, I2, …, Ik)

k is set to 3

Item Type numbers

(I1, I2, I3)

3

5. Identification Probability Matrix k =3, m = 3, k x m = 9 9

IP m by k

(

IP11 IP12 ⋯ IP1k

IP21 IP22 ⋯ IP2k

⋮
IPm1

⋮
IPm2

⋱
⋯

⋮
IPmk

)

IP 3 by 3

(
IP11 IP12 IP13

IP21 IP22 IP23

IP31 IP32 IP33

)

 Total Number of Features 17

Encoding Procedures

Figure 2. Two different Encoding procedures to convert original parameters into fixed parameters

The zero-padding procedure limits the problem to a few scenarios by fixing the length of

parameters and using zeros. For the encoding procedure, the information present in the variable length

parameters is encoded to yield a fixed number of parameters. It involves building a distribution of

values by combining variable-length parameters and the distribution parameters (mean, variance, etc.)

are used as the encoded parameters. The encoding process allows greater flexibility as it does not

restrict the number of parameters and hence could be applied to any inspection scenario. Figure 2

describes two different procedures to encode original features to fixed features. The ItemType Nos,

Instrument Measurement Nos, and IP Matrix are the variable length features that vary from scenario

to scenario. In V1 Encoding, the ItemType Nos array and Instrument Measurement Nos array are

normalized to values from 0 to 1 by dividing them by total items (N) and the total measurements (n),

respectively. Values are generated by multiplying of normalized itemType Nos array with each

column of the IP Matrix followed by multiplication of normalized Instrument Measurement Nos array

with each row of the IP Matrix. The distribution matrix is generated. The distribution parameters like

mean, variance, skewness, and kurtosis are evaluated, along with total items, and the N_by_n ratio is

taken as encoded features to train V1 Encoded ML models. Unlike V1 Encoding, which develops

encoding distribution using a multiplication scheme, V2 Encoding uses a duplication scheme to

develop the required encoding distribution. Each element of the IP Matrix, say IPmk, is duplicated by

the number specified by the ItemTypeNos Ik and MeasurementNos nm product. The distribution

parameters are taken to train V2 Encoded ML models.

RESULTS AND DISCUSSION

 Multiple DP models are developed for the six ML methods classes and several

hyperparameters described in Table 1. The 10-fold cross-validation technique is used to compare DP

model performance on the training data set. For training data set, the OLS method minimizes the sum

of squares of residuals (SSR) deterministically, for the remaining ML method classes, mean absolute

error (MAE) is minimized using the Adam stochastic gradient solver [11]. For performance comparison,

the root mean square error (RMSE) is computed for the DP models using training and testing datasets.

The RMSE scores evaluated on the training dataset gives the trained model performance on known

instances, whereas the RMSE scores evaluated on the testing dataset give the generalization ability

of trained models on unseen data instances. The RMSE metric shares the total error among all

instances equally. The smaller the value of RMSE, the better the model performance. Since the DP is

a probability function with values between 0 and 1. An RMSE value of 0.8 is interpreted as predicted

DP values diverging from actual DP values by a probability of 0.8. For an ML model to make reliable

DP predictions, its RMSE score should be less than 0.005 on unseen instances of the test dataset.

Zero-padded Model Results

The inspection scenarios of Table 6, subjected to Figure 1 diversion strategies, are used to generate a

training dataset to train zero-padded models of various classes and parameters. One model is selected

based on the RMSE score using 10CV training from each class. The criterion for selecting the best

model is the lowest RMSE score. The performance (RMSE scores) of the selected models are

evaluated using the unseen test dataset. The test dataset is generated from inspection scenarios of

Table 7. Both the training and the test RMSE scores are shown in Figure 3.

Figure 03. Performance comparison of class-wise best Zero-padded models during 10CV Training and on

Test dataset.

Encoded Model Results

The same data instances from the zero-padded training dataset are encoded using procedures

of Figure 2 to generate training datasets for encoded-V1 and encoded-V2 models. The inspection

scenarios of Table 8, subjected to Figure 1 diversion strategies, are used to generate test datasets for

performance evaluation of encoded-V1 and encoded-V2 models. Figures 4 and 5 show the RMSE

scores of class-wise best encoded-V1 and encoded-V2 models during 10CV training and their

performance on test dataset. A quick comparison of zero-padded and encoded model performance

plots shows that the encoding process lowered RMSE scores for the encoded model results. Indicating

improved performance of encoded models over zero-padded model for all classes. Note that both

zero-padding and encoding methods used the same training dataset.

Figure 04. Performance comparison of class-wise best Encoded-V1 models during 10CV Training and on

Test dataset.

Figure 05. Performance comparison of class-wise best Encoded-V2 models during 10CV Training and on

Test dataset.

Table 5 summarizes the performances of best-of-class-wise ML models on the unseen test

dataset instances for three different procedures, i.e., zero-padding, encoding v1, and encoding v2.

Compared to zero-padding, the encoding process improves the generalizing ability of all ML models

on the test dataset. This inference is established by observing the reduction of RMSE scores for every

type of ML model between zero-padding and encoding methods. The reduction in RMSE scores from

V1 to V2 encoding procedure suggests that further improvements can be achieved with better

encoding procedures and parameters.

Table 5. Summary of best model performances (RMSE) on the unseen test dataset

 OLS LNL DNN SVR GBR XGBR

Zero-Padded 0.886 0.887 0.481 1.035 0.362 0.392

Encoded V1 0.357 0.355 0.317 0.4 0.31 0.318

Encoded V2 0.31 0.31 0.18 0.34 0.25 0.24

CONCLUSION

The ML models generally use a constant number of input parameters, whereas the DP problem

inherently has varying input parameters. The work presented here provided solutions to fix the

number of input parameters to develop working ML DP prediction models. Two different procedures,

i.e., zero-padding and encoding, are investigated. The ML models are successfully developed for

various classes and hyperparameters using both procedures. The results show that by applying

encoding procedures, the models produce lower RMSE scores (better results) on both training and

test datasets for all classes of ML models investigated in this work. The overall lowest RMSE score

of 0.18 on the test dataset was evaluated from the Encoded-V2 DNN class best model. An RMSE

score of 0.005 or less is desirable for high confidence in model reliability. Although promising, the

value of 0.18 is still much greater than the desired RMSE score. Further work is proposed to develop

better encoding procedures and to identify additional distribution parameters like mode and median,

which could encompass more information to predict DP. The practical uses of ML-based DP

prediction models are found to be limited at this stage, and further investigation is recommended.

Table 6. ML Training dataset scenarios - stratum inventory, inspection plans

Nuclear Inventory Inspection Plan

Stratum ID Description Items Q% PU (SQ) HEU (SQ) LEU (SQ) NU (SQ) DU (SQ) H F D
RSD

H
RSD F RSD D

UFE EU 30B PROD CYL IN STORE 26 0 17.930 1 2 1 0.15 0.05 0.005

UFN NU 48Y FEED CYL IN STORE 35 0 28.967 3 1 0.07 0.005

UFN-H NU HEELS CYL IN STORE 40 0 0.009 1 0.15

UFD DU 48Y TAILS CYL IN STORE 300 0 121.988 1 1 4 0.15 0.09 0.01

SM1-E EU SAMPLES AND SLUDGES 163 0 0.015 1 0.15

UFEP EU IN PROCESS CYL 9 0 8.299 1 0.005

UFNP NU IN PROCESS CYL 6 0 2.298 1 0.005

UFDP DU IN PROCESS CYL 2 0 0.804 1 0.01

FF-1 Fresh Fuel in Dry Store 13728 0 13.176 3 0.15

FF-1D Fresh Fuel Dummy in Dry Store 264 0 0.023 1 0.15

FF-2D Fresh Fuel Dummy in Pond 264 0 0.023 1 0.15

SF- Spent Fuel 223608 0 508.525 38.738 6 0.15

SR- Pins in closed container 8 0 0.024 0.004 1 0.15

UF- UF6 CYLINDERS 101 0 71.000 1 4 1 0.25 0.05 0.005

PD1 UO2 & U3O8 Powders in Containers 2100 0 30.000 2 3 1 0.25 0.045 0.005

PD2 UO2 & U3O8 Powder in Hoppers 25 0 7.800 1 1 0.25 0.004

PL1 Scintered Pellets in Cans 2250 0 8.500 1 1 0.25 0.003

PL2 Scintered Pellets in Racks 84 0 9.000 2 0.003

FR1 Finished Fuel Rods 19640 0 23.000 3 3 0.25 0.026

FF- Finished Assemblies 106 0 27.000 2 4 0.25 0.057

SC1 CLEAN SCRAP 4540 0 17.800 1 2 1 0.25 0.08 0.04

SD1 DIRTY SCRAP 2910 0 2.100 1 0.14

FFH Fresh MTR elements 1280 100 0.800 2 0.05

FRH Fresh Moly targets 2000 0 0.380 1 0.05

CFH Core MTR Fuel 480 100 0.300 3 0.05

SFH Spent MTR Fuel 4800 100 1.050 5 0.05

UFE1 N = 26; n = 1 26 0 17.930 1 0.05

UFE1 N = 26; n = 2 26 0 17.930 24 0.05

UFE1 N = 26; n = 4 26 0 17.930 4 0.05

UFE2 N = 26; n = 6 26 0 17.930 6 0.05

UFE3 N = 26; n = 8 26 0 17.930 8 0.05

UFE4 N = 26; n = 10 26 0 17.930 10 0.05

UFE5 N = 26; n = 12 26 0 17.930 12 0.05

UFE6 N = 26; n = 14 26 0 17.930 14 0.05

UFE7 N = 26; n = 16 26 0 17.930 16 0.05

UFE8 N = 26; n = 18 26 0 17.930 18 0.05

UFE9 N = 26; n = 20 26 0 17.930 20 0.05

UFE10 N = 26; n = 22 26 0 17.930 22 0.05

UFE11 N = 26; n = 24 26 0 17.930 24 0.05

UFE12 N = 26; n = 26 26 0 17.930 26 0.05

UFE13 N = 200; n = 190 200 0 80.000 190 0.05

Table 7. ML Testing dataset scenarios for evaluating the performance of Zero-padded models

Nuclear Inventory Inspection Plan

Stratum ID Description Items LEU (SQ) H F D RSD H RSD F RSD D

U200_n5_1 N = 200; n = 5 200 50.000 5 0.05

U200_n5_2 N = 200; n = [4 5] 200 50.000 4 1 0.05 0.005

U200_n5_3 N = 200; n = [3 1 1] 200 50.000 3 1 1 0.05 0.005 0.15

U200_n4_3 N = 200; n = [2 1 1] 200 50.000 2 1 1 0.05 0.005 0.15

U200_n3_3 N = 200; n = [1 1 1] 200 50.000 1 1 1 0.05 0.005 0.15

U5000_n25_1 N = 5000; n = 25 5000 100.000 25 0.05

U5000_n25_2 N = 5000; n = [20 5] 5000 100.000 20 5 0.05 0.005

U5000_n25_3 N = 5000; n = [15 5 5] 5000 100.000 15 5 5 0.05 0.005 0.15

U5000_n20_3 N = 5000; n = [10 5 5] 5000 100.000 10 5 5 0.05 0.005 0.15

U5000_n15_3 N = 5000; n = [5 5 5] 5000 100.000 5 5 5 0.05 0.005 0.15

Table 8. ML Testing dataset scenarios for evaluating the performance of Encoded models

Nuclear Inventory Inspection Plan

Stratum ID Description Items LEU (SQ) H F D G K RSD H RSD F RSD D RSD G RSD K

U200_n5_1 N = 200; n = 5 200 50.000 5 0.05

U200_n5_2 N = 200; n = [4 5] 200 50.000 4 1 0.05 0.005

U200_n5_3 N = 200; n = [3 1 1] 200 50.000 3 1 1 0.05 0.005 0.15

U200_n5_4 N = 200; n = [2 1 1 1] 200 50.000 2 1 1 1 0.05 0.005 0.15 0.1

U200_n5_5 N = 200; n = [1 1 1 1 1] 200 50.000 1 1 1 1 1 0.05 0.005 0.15 0.1 0.25

U5000_n25_1 N = 5000; n = 25 5000 100.000 25 0.05

U5000_n25_2 N = 5000; n = [20 5] 5000 100.000 20 5 0.05 0.005

U5000_n25_3 N = 5000; n = [15 5 5] 5000 100.000 15 5 5 0.05 0.005 0.15

U5000_n25_4 N = 5000; n = [10 5 5 5] 5000 100.000 10 5 5 5 0.05 0.005 0.15 0.1

U5000_n25_5 N = 5000; n = [5 5 5 5 5] 5000 100.000 5 5 5 5 5 0.05 0.005 0.15 0.1 0.25

REFERENCES

1. IAEA, “The Structure and Content of Agreements Between the Agency and States Required in

Connection with the Treaty on the Non-Proliferation of Nuclear Weapons,” (INFCIRC/153, Corrected),

Vienna: IAEA, 1972.

2. International Atomic Energy Agency; IAEA Safeguards Glossary, International Nuclear Verification Series

No. 3; 2003.

3. IAEA, “Statistical Concepts and Techniques for IAEA Safeguards,” IAEA SG-PR-2016 Rev. 5, 1998.

4. Lohith Annadevula, S. K. Aghara; Universal deterministic modeling to compute stratum-level detection

probability based on conditional tree diagram, submitted to Proc. of the INMM 63rd Annual Meeting;

2022.

5. Lohith Annadevula, S.K. Aghara, Kenneth Jarman and Logan Joyce; Stochastic Approach to Inspection

Evaluation: Methodology and Validation. ESARDA Bulletin - The International Journal of Nuclear

Safeguards and Non-proliferation, 64(1), 30-38. (2022, June).

https://doi.org/10.3011/ESARDA.IJNSNP.2022.3

6. F. Pedregosa et al., "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research,

vol. 12, pp. 2825-2830, 2011.

7. T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794, 2016, doi:

10.1145/2939672.2939785.

8. G. James, D. Witten, T. Hastie, and R. Tibshirani, "k-Fold Cross-Validation," in An introduction to

statistical learning : with applications in R: New York : Springer, 2013, pp. 181-183.

