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Abstract 
Monitoring and characterization of nuclear facilities is an essential activity of nuclear non-
proliferation, materials control, and safeguards. Such inferences are best supported by extensive a 
priori knowledge of facility design and operations, but that knowledge is not always correct, current, 
and complete. We present a technique for identifying discrepancies between a priori understanding 
and actual conditions on the ground by comparing the output of computational models of facility 
activities with sensor data gathered on-site. The technique leverages a novel unsupervised machine 
learning algorithm to provide a near-real-time rating of the discrepancy between expected and 
observed behavior. The algorithm is validated against a comprehensive anomaly detection 
benchmark, including 14 other unsupervised anomaly detection methods on ten datasets. We present 
promising results from applying the proposed technique to a prototype ML/AI system deployed at 
two testbed facilities. The results show the algorithm's effectiveness in identifying and explaining 
real-world discrepancies in support of monitoring and characterization activities. 
 
1. Introduction 
Monitoring and characterizing nuclear facilities are important activities for nuclear non-proliferation, 
materials control, and safeguards [1]. These serve as confidence-building measures and facilitate 
other responses by the international community when and if necessary. Over the beginning of this 
century, these activities have strengthened in key areas thanks to technological advances such as 
remote sensing and Machine Learning (ML) [2]. ML can be used to identify previously unknown 
entities of elevated risk through sensor fusion and, in the process, save hundreds of analyst hours in 
contrast to previous manual efforts. Still, inferences are best supported by extensive a priori 
knowledge of facility design and operations involving subject matter experts, but that knowledge is 
not always correct, current, and complete [3]. The discrepancies between a priori understanding and 
actual conditions on the ground can build bias into ML models and produce prejudiced inferences 
due to erroneous assumptions. A possible solution is to compare current foundational knowledge with 
the actual ground conditions to identify points in time that do not conform to a well-defined "normal" 
behavior. 
 
Anomaly detection is an active area of research in cyber intrusion, fraud, industrial damage, image 
processing, and sensor networks [4]. In remote sensing, several challenges exist concerning the high 
dimensionality and diversity of the collected pieces of information, as well as the presence of missing 
values and other types of corruption inherited from the intermittent collection and communication of 
information. Many data processing techniques in conjunction with anomaly detection methods have 
been proposed to alleviate these issues. For instance, a semi-supervised deep hypersphere method 



combined with a deep neural network is proposed to separate anomaly features from regular features 
and identify anomalies [5]. 
 
Several strategies, including imputation, reduction, and marginalization, have been investigated to 
handle missing values in the context of anomaly detection [6]. Experiments on three anomaly 
detection methods and several datasets of different dimensionalities, percentages of anomalies, and 
modalities shed light on the conditions models and datasets must comply with before applying the 
strategies. However, the study exposes the limitations of applying these strategies. For instance, 
relevant information may be lost, and unwanted bias may be inserted into the data. Per the ethical and 
regulatory requirements of more robust solutions to these challenges, it is imperative to understand 
the individual contribution of different features towards anomaly identification to provide 
explanations to stakeholders of ML systems used in critical domains. 
 
In the past, explainable anomaly detection methods have leveraged techniques, including feature 
projection, time-series decomposition, and Gaussian processes [7], to produce local explanations at 
the sample level. Yet, their transparency comes at a high computational cost and at the expense of 
only processing low-dimensional data. This paper proposes an unsupervised anomaly detection 
algorithm to alleviate the abovementioned challenges. The proposed approach combines the Self-
Organizing Maps (SOM) with the k-Nearest Neighbors (kNN) for anomaly detection. The SOM 
model and kNN algorithm implement the Heterogeneous Euclidean Overlap Metric (HEOM) to 
overcome the limitations of distance-based modeling, making the computation of anomaly scores 
possible even in the presence of missing values. Also, the HEOM enables the anomaly detection 
algorithm to provide insights into the process by which it produces inferences at the sample level. 
The proposed algorithm's usefulness is validated through tests performed on several anomaly 
detection benchmarks from different domains and data modalities. Additional experiments on a non-
proliferation use case are presented to show the suitability of the proposed anomaly detection method 
on data containing anomalies of different types and severity levels. 
 
This paper is organized as follows. Section 2 introduces the proposed anomaly detector. The datasets 
used for benchmarking and validating the detector are described in Section 3. The experiments setup 
is described in Section 4. Section 5 presents the results and discussion, and the conclusion and future 
work are discussed in Section 6. 
 
2. Anomaly Detection Algorithm 
Based on the data and model transparency challenges described in the Introduction, we design a 
general anomaly detection algorithm (SOM+kNN) applicable to any ML learning problem to decide 
only upon its functioning instead of its execution. This allows for abstractions that enable anomaly 
detection model interpretability down the road. 
 



          
Figure 1. A realization of the anomaly detection algorithm second stage. The neurons with most of the samples 

associated with them to a degree (10) are extracted from the anomaly detection model. The distance between an unseen 
sample and its five nearest neighbors from the standard reference is computed. The mean is used to aggregate the 

distances to obtain the discrepancy score for the sample. 
 
2.1 Step-by-step Anomaly Detection Algorithm 
The input to the anomaly detection algorithm consists of tabular data containing the set of plausible 
scenarios from the case or system to be analyzed. The algorithm goes through a two-stage step-by-
step process to (1) train the detector and compute the anomaly threshold parameter to subsequently 
(2) flag unseen samples as anomalous and non-anomalous. In the first stage during training, the 
samples in the train set are fed to the network of a SOM [9] model using competitive learning.  
 
In the first stage, for each training sample, the distances to all the weights vectors of the network are 
computed using the HEOM [10] (See Figure 1). For each dimension, the HEOM outputs zero if both 
values are missing and one if only one is missing. If neither is missing, it outputs the absolute 
difference between the values divided by the overall range of values in that dimension. The arithmetic 
mean of the per-dimension distances then gives the vector distance and the weights of the best 
matching unit and the ones close to it are adjusted toward the sample. This process is repeated for 
several thousand iterations until the model converges. 
 
The units with the highest number of training samples associated with them during training are 
extracted from the map of the SOM to build the standard reference. The reference represents the 
universe of expected scenarios; behavior significantly different from the standard reference should be 
considered anomalous. For each sample in the train set, the k nearest neighbors from the standard 
reference are found using the nearest neighbor algorithm [11], and the distance from them is 
computed. Taking the mean over the distances from the neighbors for each training sample yields 
their discrepancy scores. The three-sigma rule is then used to compute the anomaly threshold. 
 
In the second stage, the discrepancy score is computed for samples the anomaly detection model has 
not seen during training. The scores are compared to the anomaly threshold obtained in the first stage. 
Scores over the threshold are deemed anomalous, whereas scores on or under the threshold are non-
anomalous. Given that the HEOM computes discrepancy scores over the present and missing values 
individually, the proposed SOM+kNN becomes transparent in the context of the contribution of each 
type of distance to explain how it determines whether a sample is abnormal or not. The Results and 
Discussion section provides a discussion of the explanations for several inferences produced by the 
proposed anomaly detection algorithm. 



 
3. Datasets 
To evaluate the proposed anomaly detection algorithm, we source more than a dozen datasets from 
ADBench, an anomaly detection benchmark with a comprehensive set of methods, real-world and 
synthetic datasets, and capabilities for anomalous data generation [8]. Additionally, we validate the 
algorithm on an actual non-proliferation use case. The following is a description of the datasets and 
anomaly types considered in our experiments for evaluating and comparing our proposed algorithm 
to other unsupervised anomaly detection models. 
 
3.1 ADBench 
For the sake of fair comparison, the task of identifying irregular data samples is limited to the problem 
of unsupervised anomaly detection. In this problem, an anomaly detection algorithm AD is presented 
with a collection of n samples 𝑿𝑿 = {𝑥𝑥, . . . , 𝑥𝑥𝑛𝑛} ∈ ℝ𝑛𝑛×𝑑𝑑, where each sample contains f features. With 
this setting, the goal is to train a model M to output anomaly score 𝑨𝑨𝒔𝒔 = 𝑀𝑀(𝑿𝑿) ∈ ℝ𝑛𝑛×1, denoting the 
level of outlyingness for each sample. Subsequently, predictions are performed on m unseen samples 
𝑿𝑿𝒕𝒕𝒕𝒕𝒔𝒔𝒕𝒕 ∈ ℝ𝑚𝑚×𝑑𝑑 to output 𝑨𝑨𝒔𝒔−𝒕𝒕𝒕𝒕𝒔𝒔𝒕𝒕 = 𝑀𝑀(𝑿𝑿𝒕𝒕𝒕𝒕𝒔𝒔𝒕𝒕) ∈ ℝ𝑚𝑚×1. Note that unsupervised anomaly detection 
methods do not use data labels during training in this setting. The labels are only used for investigating 
model performance across different datasets, anomaly types, and severity levels post-training. 
 

Table 1. Benchmark datasets from ADBench [8].  

Dataset Description 
Number 

of 
Samples 

Number 
of 

Features 

Percentage 
of 

Anomalies 
Category 

Annthyroid Medical information about 
hypothyroidism. 7200 6 7.42 Healthcare 

Glass Forensic data describing types of 
glass. 214 7 4.21 Forensic 

Ionosphere 

Radar data of electrons in the 
ionosphere showing evidence of 

some type of structure in the 
ionosphere. 

351 33 35.90 Oryctognosy 

MAGIC 
Gamma 

Registration of high energy gamma 
particles. 19020 10 35.16 Physical 

MuSK 
Multivariate samples describing 

Muscle-specific kinase 
conformations. 

3062 166 3.17 Chemistry 

Shuttle Aeronautic information about NASA 
space shuttles. 49097 9 7.15 Astronautics 

Spambase Spam and non-spam e-mails. 4207 57 39.91 Document 

Waveform Data representing three classes of 
waveforms. 3443 21 2.90 Physics 

Wilt Differentiates diseased trees from 
other land covers. 4819 5 5.33 Botany 

Yeast Cellular localization sites of proteins. 1484 8 34.16 Biology 
 
We leverage the work from ADBench to generate a baseline of realistic synthetic datasets from ten 
diverse benchmarks (See Table 1. for a more detailed description). 
 
 



3.2 Non-proliferation Use Case 
In addition to the ADBench datasets, we validate the usefulness of the proposed anomaly detection 
algorithm on an actual non-proliferation use case containing a set of real-valued data streams. At each 
time step, statistical features such as quantile, mean, and standard deviation are extracted from the 
last few hours of each data stream; if no data is present in that period, the features are left missing. 
The anomalies inserted into the dataset are the following: 

• Feature removal: This setting removes a subset of features across all time points following 
feature extraction. 

• Feature zeroing: This setting zero out a specific subset of features across all time points 
following feature extraction. 

• Feature randomization: This setting shuffles the feature values across its time points 
following feature extraction. 

 
These anomalies are applied to 1, 4, 8, 10, and 12 features of the non-proliferation dataset. 
 
4. Experiments 
The study conducted on ADBench's benchmarks provides a standardized scaffold for evaluating the 
performance of different anomaly detection methods, which include other traditional and modern 
deep learning-based anomaly detection approaches. Table 2 lists the detectors considered in this work 
and briefly describes each and their capabilities in terms of explainability, handling missing values, 
and processing high-dimensional datasets. These methods and the proposed SOM+kNN algorithm 
are applied to data subjected to the corruptions and severity levels described in the Datasets section. 
 

Table 2. Comparison of anomaly detection methods on their capabilities to handle missing and high-dimensional data 
and if they can explain the inferences they produce [8]. 

Model Name Explainable  Missing 
Values 

High-
dimensional 

Data 
Model Description 

Cluster-Based Local 
Outlier Factor 

(CBLOF) 
   

A density-based method that uses clustering to 
identify standard examples and calculates the local 
outlier factor for each sample based on its distance 
to the nearest cluster. 

Local Outlier Factor 
(LOF)    

A density-based outlier detection method calculates 
an outlier factor for each example based on the ratio 
of its local density compared to the densities of its 
nearest neighbors in the feature space. 

Isolated Forests 
(iForest)    

An ensemble of isolation trees is used for anomaly 
detection by considering the path length of each 
sample. 

Connectivity-based 
Outlier Factor (COF)    

A density-based method that calculates an outlier 
factor for each sample based on its distance to the 
nearest neighbors in the feature space and the 
connectivity of these neighbors. 

Deep Autoencoding 
Gaussian Mixture 

Model (DA GMM) 
   

A deep learning method that combines autoencoding 
and Gaussian mixture modeling to identify 
anomalous examples. 

Subspace Outlier 
Detection (SOD)    

An anomaly detector that considers the relationships 
between the features in a subspace and identifies 
anomalous examples. 

Copula-Based Outlier 
Detection (COPOD) 

   
A distribution-based method that models the 
dependencies between the features using copulas 
and calculates the likelihood of each sample under 
the copula model. 



Empirical-
Cumulative-

distribution-based 
Outlier Detection 

(ECOD) 

   
A Distribution-based method that estimates a data's 
empirical cumulative distribution function (ECDF) 
and identifies samples outside a specific interval 
around the ECDF as anomalous. 

k-Nearest Neighbors 
(kNN) 

   
An algorithm that identifies anomalies based on the 
classes of its k nearest samples using the Euclidean 
distance. 

Histogram-based 
Outlier Score 

(HBOS) 
   

A density-based method that uses histograms to 
estimate the density of the data and calculates the 
outlier score for each example based on its distance 
to the nearest bin in the histogram. 

Principal Component 
Analysis (PCA) 

   
Dimensionality reduction method that projects the 
data onto a lower-dimensional subspace and 
identifies anomalous examples far away from the 
central cluster in the subspace. 

Lightweight On-line 
Detector of 

Anomalies (LODA) 
   

Decision tree-based method that learns the data's 
ordinary behavior and identifies examples that 
deviate from the learned behavior as anomalous. 

One-Class Support 
Vector Machines 

(OCSVM) 
   

A boundary-based method that uses an SVM to learn 
a boundary around ordinary examples and identifies 
anomalous samples falling outside the threshold. 

Deep Support Vector 
Data Description 

(DeepSVDD) 
   

A deep learning method that uses an SVM-based 
model to learn a compact and tight representation of 
the standard examples and identify examples that 
fall outside the representation as anomalous. 

Proposed 
SOM+kNN 
Algorithm 

   
Combines the SOM, kNN, and HEOM for 
detecting anomalies in data with complex 
structures or high dimensionality and providing 
explainable inferences. 

 
These state-of-the-art anomaly detection methods represent a diverse range of approaches to anomaly 
detection, like density-based methods, clustering-based methods, distribution-based methods, 
ensemble methods, and deep learning methods. They differ from the proposed SOM+kNN algorithm 
in the specific techniques used to build a schema and identify anomalous examples. For example, 
calculating the local outlier factor, modeling the dependencies between features, estimating the 
empirical cumulative distribution function, combining the outputs of multiple base models, using 
histograms to estimate density, projecting the data onto a lower-dimensional subspace, learning the 
ordinary behavior of the data, learning a boundary around the standard samples, and learning compact 
representations of the regular samples. 
 
To evaluate the performance of the anomaly detection methods, we generate data for different types 
of datasets such as time series, images, financial information, video, speech, and text. This variety 
allows us to assess the performance of the detectors on a wide range of scenarios and compare them 
to the proposed SOM+kNN algorithm. Second, we generate training and test data based on a nuclear 
non-proliferation use case, including data streams from remote edge sensors deployed at a working 
industrial site. This approach allows us to validate the proposed SOM+kNN algorithm on data 
representative of a real-world scenario. 
  
The metrics for the performance evaluation include the Area Under the Curve (AUC), which 
represents the area under the Receiver Operating Characteristic (ROC) curve. This metric allows us 
to assess the trade-off between sensitivity and specificity at the chosen anomaly threshold. 
Additionally, other metrics considered in this work include the precision and recall for measuring the 



overall false-positive and false-negative rates and the F1-score that evaluates the overall recall and 
precision. Finally, the accuracy provides insights into the overall performance of detecting positive 
and negative samples correctly. 
 
5. Results and Discussion 
This section presents the results and discussion of applying the anomaly detection methods and the 
proposed SOM+kNN to the datasets generated using ADBench and the actual non-proliferation case. 
 

 
Figure 2. Comparison of several anomaly detection methods on their AUC performance. The performance obtained by 

the proposed SOM+kNN algorithm is highlighted using the star icon. 
 
5.1 ADBench 
Figure 2 depicts the performance obtained by the proposed anomaly algorithm highlighted with the 
star icon and the performances obtained from the baseline anomaly detection models from ADBench. 
The SOM+kNN algorithm obtains better or comparable AUC scores to those of the other methods 
over the Ionosphere, MACIG.gamma, MuSK, Shuttle, Spambase, and Waveform datasets. This 
suggests a proportional relationship between the performance of the SOM+kNN and the number of 
samples and features in the datasets. 
 



 
Figure 3. Performance results for the proposed SOM+kNN algorithm on the non-proliferation use case. 

 
5.2 Non-proliferation Use Case 
Figure 3 shows that the SOM+kNN obtains values for the precision, recall, F1, and accuracy metrics 
of around 50%, 25%, 30%, and 50%, respectively, across all the severity levels. On average, the 
model performs better when the severity level is equal to 4 and 8. This means that the model is better 
at detecting anomalous samples when there are several features affected by the corruptions inserted 
into them. Regarding the missing values present in the data, we hypothesize that they contribute to 
most of the discrepancy scores producing false positive predictions. This is confirmed by the results 
in Figure 4, depicting the individual contribution of present and missing values of four samples over 
different anomaly types and the threshold. The samples marked as false positives over all the anomaly 
types show that the missing values are the driving factor of the discrepancy score in producing a one 
when it should be a zero. This could be an indication of data sparsity from the edge sensors. 
 

 

 
Figure 4. The individual contribution of present and missing values to the discrepancy score over four anomaly types at 

severity level equals to eight. The red dashed line represents the anomaly threshold. 
 

  



6. Conclusion and Future Work 
This work discussed the challenges associated with state-of-the-art anomaly detection approaches. 
These limitations include the lack of detectors that can simultaneously handle high-dimensional data 
and missing values while providing explanations for the inferences they produce. To alleviate these 
challenges, we presented the SOM+kNN anomaly detection algorithm, which combines the SOM, 
kNN, and HEOM to flag anomalies based on their discrepancy scores. Experiments on several real-
world datasets demonstrated the proposed anomaly detection algorithm's usefulness in identifying 
anomalies. Additional experiments on a non-proliferation use case validated the algorithm to detect 
anomalies and explain different types of predictions at the sample level using the individual present 
and missing values discrepancy scores. Moreover, the algorithm is suitable for non-proliferation 
applications, given its verified repeatability regarding the results obtained for different datasets. 
Future work includes transferring knowledge from the current use case to other testbeds and domains. 
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