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Abstract 
Monitoring and characterization of nuclear facilities is an essential activity of nuclear 
nonproliferation, materials control, and safeguards. Such inferences are best supported by 
plentiful, persistent, close-range sensors operating under control of the inference system, but those 
resources are not always available for real-world nonproliferation problems. We identify 
challenges and associated mitigation strategies related to integrating few, non-persistent, remote, 
third-party sensors into an autonomous monitoring and inference system. We present promising 
results from applying a prototype ML/AI system employing the proposed strategies to two testbed 
facilities and discuss ongoing efforts to improve knowledge management and update, uncertainty 
quantification, and ML/AI model interpretation and explanation. 

1 Introduction 
The Persistent DyNAMICS (Dynamic Nuclear Activity Monitoring through Intelligent 
Coordinated Sensing) project aims to provide persistent awareness of activities involving nuclear 
fuel cycle production and/or materials. The project engages multiple interdisciplinary teams 
toward this goal, architecting a system capable of intelligently coordinated collection and 
interpretation of information at several sites representing different steps in the nuclear fuel cycle. 
This work describes progress from one of the interpretation teams: efforts to make sense of 
information collected in the challenging data environment inherent in the Persistent DyNAMICS 
use cases. 

The remainder of this paper presents an overview of that use case and what makes it so challenging, 
introduces our approach to addressing the challenges, shows results applying that approach to two 
testbed facilities, and concludes with a discussion of future work. 

2 Dynamically Persistent Remote Inference of Nuclear Facility Activity 
The task of the interpretation team is, in part, to answer high-level questions about activities at a 
target facility. We identify four categories of user questions which require different approaches. 
We go on to identify two primary challenges to achieving that goal: a dearth of representative 
training data and characteristics of collected data. 

2.1 User Questions 
First, we make distinctions between activity hypotheses; given a set of predicted possible 
processes, which are running? Answering this question relies heavily on defining what those 
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possible processes could be; nuclear activities 
are typically complex, and delineating between 
processes is not trivial, especially when they 
overlap in time, location, or resources. 

Second, assuming at least partial knowledge of 
the process, we identify in which step or 
temporal state of the process the facility is 
operating. Answering this second question 
does not always require answering the first; 
many processes share common states such as 
distinguishing between “operating” and “not 
operating”. Indeed, at the reactor testbed site, we answer the process hypothesis question by first 
determining how long the reactor was in the “irradiating” state. 

Third, we estimate real- or ordinal-valued characteristics or parameters of the process, such as 
material throughput. This has proven very challenging in the constraints of our use case and 
therefore has been demonstrated only in simulation. 

Finally, we detect anomalous behavior of the target. We posit two broad categories of anomalies: 
behavior or activity at the site that is outside of normal operations (such as a reactor “scram”) and 
behavior that an operator at the site might consider normal but that we did not predict as a likely 
occurrence. The first sort of anomaly is difficult to foresee, and we try only to build resilience and 
uncertainty quantification into the inference system. On the other hand, anomalies of the second 
sort require manual follow-up: ideally, we would learn from the occurrence and update our 
predictions of likely behavior. We refer to this predict-observe-learn cycle as “knowledge update”. 
Knowledge update is an important target of ongoing research. 

2.2 Challenge: Dearth of Representative Training Data 
Real-world processes in the nuclear fuel cycle are complex and contingent on technological, 
political, economic, and other factors, driving large variation between and within processes, even 
at the same facility. Such variation limits how representative historical data gathered at a site is of 
future activities at that site, let alone diverse sites around the world. Automated inference systems 
such as machine learning (ML) rely on historical data to learn indicators and patterns of target 
activities that will transfer to future data. Without representative training data to learn from, 
indicators must be predicted manually, opening the system to new and different issues of bias and 
limited knowledge. 

Moreover, the predicted indicators must be encoded in a way understandable to the automated 
inference systems. Persistent DyNAMICS has pursued two strategies to accomplish this: dynamic 
Bayesian networks, which encode a priori knowledge as a set of variables and their conditional 
dependencies over time, and a synthetic training data approach, which uses simulators to mitigate 
directly the dearth of representative training data. We focus on the latter strategy. 

Figure 1. Graphical depiction of the four categories of user 
questions. 
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2.3 Challenge: Data Characteristics 
Characterizing a dynamic process from remote data collection often requires distributed, multi-
modal sensor networks. Unifying heterogeneous information into a common framework for 
interpretation requires source-specific expertise, and exfiltrating high-dimensional streaming data 
commands high bandwidth capacity. Edge processing provides an attractive solution to both 
concerns: processing data using resources co-located with a sensor avoids the overhead of data 
transmission and empowers expert sensor operators to process their own data. 

Edge sensing assemblies deployed in such a network are often subject to physical, bandwidth or 
other constraints that cause sparse, irregular, and asynchronous reporting; that is, observations may 
be infrequent, hold to no consistent pattern, and sensors are not necessarily observing the same 
thing at the same time. In addition, third-party sensors may be employed which makes re-
configuration in response to evolving information slow or impossible. 

Prevented from observing everything all the time, Persistent DyNAMICS coordinates data 
collection in an event-driven manner to observe the right things at the right time. In the process of 
non-persistent but overlapping monitoring, sensors independently report on events of interest. In 
response, the coordination system automatically “tasks” sensors to collect information to confirm 
the event and better understand it. 

The combination of edge processing and intelligent coordination has been demonstrated 
successfully to observe events of interest [Burke, et al., 2022]. However, this data collection 
approach does not fully ameliorate challenges interpreting the data; observations more likely to 
contain relevant information are nonetheless sparse, irregular, and asynchronous.   

3 Approach 
To address the dearth of representative training data, we predict likely behavior using a priori 
knowledge of facility operations and design. Leveraging subject-matter expert (SME) 
understanding of physical constraints, best practices, and prior observation of a site, we synthesize 
a high-level model of the target process. We encode this high-level model using the system 
dynamics model interchange language XMILE [Everlein & Chichakly, 2013] to describe an 
activity and its indicators as a set of stocks and flows which evolve over time according to fixed 
rules, possibly with stochastic elements. This variation over time represents process states (User 
Question Type 2). Variations on the XMILE structure constitute different activity hypotheses 
(User Question Type 1), and the XMILE representation can also encode parameters (User Question 
Type 3). 

System dynamics modeling software which can read XMILE specifications, pySD [Martin-
Martinez, et al. 2022], is used to simulate many possible realizations of the evolution of those 
stocks and flows. We refer to this first simulation step as the “Process Simulator”. Those 
simulations are randomly sampled and transformed as if from sensors observing the indicators, 
what we call the “Sensed Information Simulator”. The Sensed Information Simulator requires 
detailed design information about the sensor array, including how different behaviors will be 
encoded by the edge sensing assemblies (ESAs) and performance characteristics. The simulated 
data are used to train automated inference systems for later application to real, collected data. 
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Both real data and those simulated to approximate real data possess the challenging characteristics 
identified above. To address those issues, a multi-step pipeline is applied to transform 
asynchronous, irregular time series of heterogeneous sensor data into real-valued, fixed-length 
vectors. Before processing can begin, raw ESA output is transformed into a tabular format that is 
stored and processed using the Pandas Python package [Pandas Development Team, 2023]. 
Processing begins as follows. First, sub-sets of the data are extracted from time windows, e.g., the 
past 24 hours or the past week. This step could help the model focus on different time scales of 
activity. Next, features are extracted from each of these sub-sets using Tsfresh [Christ, et al., 2018]. 
The features could include statistics like mean and standard deviation, transformations like Fourier 
or Laplace coefficients, and trends like autoregression coefficients. Finally, general-purpose 
machine learning (ML) algorithms such as those from Sci-Kit Learn [Pedregosa, et al., 2011] and 
XGBoost [Chen & Guestrin, 2016] are applied to the feature representations of the data. 

These approaches allow for the modeling of the temporal processes associated with nuclear fuel 
cycle activities while bringing to bear tools from the broader field of ML, such as plug-and-play 
pipeline components, domain shift detection, anomaly detection, and explainability. 

4 Results 
We present results applying the proposed approaches at two testbed sites: a reactor and a mill. Data 
from the reactor site were collected first, and the analysis is accordingly more focused and more 
mature. Research at the mill site is ongoing. 

4.1 Reactor 
As was previously reported [Burke, et al., 2022], in 2021 Persistent DyNAMICS completed a 
multi-year deployment at a research reactor testbed. Two user questions were asked: 

1. What kind of product isotope was the reactor producing during this irradiation cycle?  
Specifically, is the evidence consistent with the irradiation of a short-lived medical isotope 
(like Mo-99) or a longer-term isotope like Pu-238? 

2. What state is the reactor in—maintenance (irradiating) or not irradiating? 

Figure 2.Information flow diagram for the proposed interpretation approach, including the Process Simulator, Sensed Information 
Simulator, ML Vector Embedding, Edge Sensing Assemblies, and other components. 
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Three visible-spectrum imaging cameras and 
four thermal-spectrum imaging cameras 
monitored for steam plumes over the reactor 
cooling tower while two vibration sensors 
monitored for water flowing through the 
cooling system. ESAs transformed raw data 
into binary (presence or absence of a plume) or 
ordinal (minimal, low, or high water flow) 
information. 

Subject matter experts (SMEs) provided 
predictions for indicators of reactor state: the 
presence of steam plumes and elevated levels 
of water flow. Thos  e predictions were fleshed 
out into simulations that took into account 
variations in timing, sensor sensitivity and 
specificity, and other factors. A large set of 
synthetic training data was generated, and a 
classifier trained to predict from the outputs of 
the remote sensing array whether the reactor 
was operating (User Question Type 2). 

The SMEs also predicted that the type of 
product isotope would dictate how long the 
reactor would operate continuously. 
Accordingly, inferences of reactor operation 
over time were rolled-up using a simple rule-
based algorithm to determine what type of 
product isotope was being produced (User 
Question Type 1). 

Table 1. The interpretation system at the reactor testbed site over four reactor cycles is evaluated against ground-truth. Metrics 
shown are precision, recall, and their harmonic mean, F1-score, considering reactor “on” as the positive class. 

 Precision Recall F1-Score 
Cycle 1 85.1 99.0 91.6 
Cycle 2 95.7 96.6 96.2 
Cycle 3 91.0 99.5 95.0 
Cycle 4 65.4 99.8 97.6 

Four reactor cycles were observed, all producing long-lived isotopes. In all four cycles, the 
interpretation system was able to identify the correct type of product isotope, and to infer the 
correct reactor state most of the time. The last two cycles were observed in real time. Quantitative 
metrics for the latter question are shown in Table 1. An example of edge-processed sensor data, 
process state inferences, and hypothesis inference are shown in Figure 3. 

Figure 3. Screenshot of Persistent DyNAMICS live dashboard 
showing interpretation results and ESA data at the reactor 
testbed. 
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4.2 Mill 
In 2022, Persistent DyNAMICS began a 
new deployment at a commercial mill that, 
among other things, produces powdered 
natural uranium. At the request of the site 
operator, we present only general 
information about activities at the mill. The 
primary user question posed was: 

1. What state or states is the mill in, 
among a set of 10 steps? 

Although progress has been made toward 
the ability to answer that question in real 
time, results presented here were produced 
after the fact with some benefit of 
hindsight, what we call “Playback”.  

4.2.1 Process State A 
SMEs predicted two indicators of state A, 
persistently elevated heat at a specific 
location at the mill, and an effluent 
detectable with spectral sensing that is 
released occasionally. An ESA was built 
for each indicator. The machine learning 
pipeline described in Section 3 was 
configured to infer state A from the SME-
predicted indicators. Figure 4 shows ESA 
outputs (events and observations each from 
a thermal and a spectral sensor), outputs from the ML model, and ground truth for state A. The 
ground truth identifies days in which state A was active over a period of several weeks; the thermal 
indicator was predicted to persist throughout the period and the effluent indicator was predicted to 
occur occasionally throughout the period and to disperse quickly, leading to many “absent” 
observations despite recent “present” detections indicating activity related to state A. 

Visually comparing the sensor outputs to the ground truth, several limitations are apparent. The 
thermal observation stream does not show elevated temperature until several weeks after when the 
ground truth would suggest it should; later analysis showed that the sensor was misconfigured until 
about the middle of October. The spectral observation stream does not report persistently. Finally, 
the event streams were intended mostly to serve the coordination element of the sensor array and 
are of limited utility to inference of the user question. Nonetheless, the ML pipeline performed in 
line with expectations, achieving the metrics presented in Table 2. It would be unfair to expect 
high-quality, daily inference given the indicators and sensors available. 

Figure 4. Playback ESA data, interpretation results, and ground truth 
for State A at the mill testbed. 



7 
 

Table 2. The interpretation system for process state A at the mill testbed is evaluated against ground truth. Metrics shown are 
precision recall, and their harmonic mean, F1-score, considering state A “on” as the positive class. 

Precision Recall F1-Score 
46.8 60.4 52.7 

4.2.2 Process State B 
Inference of process state B proceeded 
differently. SMEs predicted visible 
evidence of material movement at specific 
locations at the mill site which would 
indicate that state B was underway. Two 
ESAs were built for this indicator, a visible 
spectrum camera that would pinpoint when 
material was being moved and a synthetic 
aperture radar (SAR) system that would 
measure changes in the amount of material 
at the source and destination. Again, the 
machine learning pipeline described in 
Section 3 was configured to infer state B 
from the SME-predicted indicators. 

However, inspection of the results showed 
that during a period when we know state B 
occurred several times, the machine 
learning approach only inferred a single 
positive instance. Visually comparing 
sensor outputs with expected behavior of 
the indicator, we realized that the 
coordination strategy for these sensors and 
fleeting nature of the indicator preempted 
meaningful negative messages. That is, all 
ESA data related to state B should be 
interpreted as indicative of state B being 
“on”, and the lack of data as indicative of 
state B being “off”. In response, we 
designed a simple threshold algorithm that 
predicts state B whenever three or more 
messages were received from any of the 
four data streams. This threshold model performed significantly better than the machine learning 
model. Figure 5 shows ESA outputs, outputs from the ML model and the threshold model, and 
ground truth for state B. Table 3 presents performance metrics for the two inference models.  

Figure 5. Playback ESA data, interpretation results from both machine 
learning and the threshold models, and ground truth for State B at the 
mill testbed. 
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Table 3. The interpretation systems, machine learning- and threshold-based, for process state B at the mill testbed are evaluated 
against ground truth. Metrics shown are precision recall, and their harmonic mean, F1-score, considering state B “on” as the 

positive class. 

 Precision Recall F1-Score 
Machine Learning 100 2.6 5.0 

Threshold 48.9 56.4 52.4 

5 Conclusion 
This work presents progress from an interpretation team on the Persistent DyNAMICS project. 
We characterize the challenges to interpretation inherent in the Persistent DyNAMICS data 
environment and present our approach to overcoming those challenges. Results from a reactor 
testbed site are recapitulated, and new, preliminary results from a mill testbed site are presented. 

Ongoing research focuses on improving the lifecycle of the proposed interpretation tools. Anomaly 
detection techniques to detect when the a priori knowledge our tools rely on falls short of being 
correct, current, and complete—improving analyses like the one performed on state B at the mill—
are the subject of another paper at this conference. Uncertainty quantification improvements have 
been hampered by the difficult of simulating realistic uncertainty information produced by edge 
sensing assemblies; those efforts continue. Finally, and perhaps most importantly, automated 
inference systems can aid human review of high-dimensional and high-volume data but, in 
applications as important as nuclear nonproliferation, such systems must be understood as 
augmenting human intelligence, not replacing it. Techniques for improved human-machine 
teaming like visualization and improved machine learning explainability remain active areas of 
research. 
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