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Abstract
Machine learning detection methods using gamma signatures from spectral measurements of low-
intensity 239Pu and 235U sources are studied. NaI detectors located at different distances from
the source have been used to collect the training and independent testing data sets. The source
is introduced via a shielded conduit into the facility where it is surrounded by 21 NaI detectors
deployed over 6 x 6 meters area in the formation of two concentric circles and a spiral. The
counts in gamma spectral regions associated with these two sources are estimated at 1 second
intervals for each NaI detector, and are used as classifier features for detecting the source presence.
Eight different classifiers with five basic properties — namely, smooth, non-smooth, statistical,
structural, and hyper-parameter tuning — are trained and tested using the background and source
measurements collected over multiple experimental runs. While the overall classifier performance
improved as detectors closer to the source are used, some identically produced detectors under-
performed but differently between two sources. Some classifiers achieved lower training error but
their testing error based on independent measurements is higher for both sources. Overall, these
results indicate significant over-fitting by these methods, and illustrate the complexity of training
and selecting the machine learning methods to solve these detection problems.

Primary Area
Nuclear Security & Physical Protection Technologies: Nuclear and Radiological Detection Tech-
nologies

1 Introduction
Signatures of low-intensity radioactive sources are important for detection tasks in nuclear safe-
guards, non-proliferation and security areas [1, 2]. We study the signatures of 239Pu and 235U
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(a) LSI faciity (b) detector formation

Figure 1: Gamma spectra of 239Pu and 235U collected using 21 Passport NaI detectors.

sources for detection analytics using gamma spectra collected by portable NaI detectors. In gen-
eral, low-intensity 239Pu and 235U sources may be encountered in different forms during their fuel
cycle [3]. For example, signatures of 239Pu may be found during the production steps involving
target irradiation and radiochemical dissolution, and those of both sources may be found during
the post-production transport [3]. The detection of such sources using gamma spectra in these
contexts constitutes a specific measurement-driven subclass of inverse problems studied in nu-
clear forensics and related areas [4]. The detection of these low-intensity sources is particularly
challenging in these environments since the Poisson distribution of gamma measurements makes
it hard to distinguish them from the background. The problem of using gamma measurements
to detect, localize and measure the strength of a radiation source, has been studied under vari-
ous formulations using a wide variety of techniques including, maximum likelihood estimation,
Bayesian estimation, sequential probability ratio test, particle filters, machine learning, and oth-
ers. In particular, the machine learning (ML) methods are receiving increased attention due to the
availability of software and data sets [5, 6, 7].

Our objective is to gain insights into ML methods for detecting these sources, referred to
as classifiers, using hand held gamma spectra detectors that can be easily deployed in the field,
for example, NaI detector by Passport Systems and CsI detector by Kromek. The application of
ML methods to these problems is complex often requiring judicious selection and use of training
data sets and classifier methods [5, 8]. In this paper, we study these aspects for 239Pu and 235U
sources using data sets from structured experiments. We utilize the gamma spectra collected at
the Low Scatter Irradiator (LSI) facility at Savannah River National Laboratory (SRNL) using
21 NaI detectors from Passport Systems, shown in Fig. 1. The activity levels in spectral regions
associated with 235U and 239Pu sources are estimated as counts at 1 second intervals, and are used
as features to train the classifiers for detecting the presence of a source. Previous results on 235U
source indicated complex patterns in terms of variations in the quality of detector spectra and the
errors of classifiers expressed as a function of detector distance from the source [9, 10]. In this
paper, we study the signatures of 239Pu and compare them to 235U results, with the addition of
a hyper-parameter tuning ML method. The eight different ML methods are chosen to represent
their diversity of design, namely smooth and non-smooth, statistical and structural methods, and
one composite method that tunes their hyper parameters and selects among them [11, 12, 13]. The
error profile of a ML classifier to detect a source is its classification error (including false alarms
and missed detection) expressed as a function of the detector distance from the source.

Our results show that the error profile of ML classifiers improves overall but not strictly mono-
tonically as measurements from the detectors closer to source are used. Spectra from some de-
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Bin # Lower Bound (keV) Upper Bound (keV) ISOTOPE(s)
01 42 86 241Am (Americium 241)

210Tl (Thallium 210)
02 64 103 133Ba (Barium 133)

109Cd (Cadmium 109)
03 105 145 57Co (Cobalt 57)

239Pu (Plutonium 239)
04 123 160 99mTc (Technetium 99m)

235U (Uranium 235)
05 166 203 235U (Uranium 235)
09 384 442 239Pu (Plutonium 239)

Table 1: Spectral bins used for estimating the counts for the sources.

tectors resulted in lower quality signatures although all detectors are identically produced and
configured. These under-performing detectors are different for the two sources. Among the ML
methods, three classifiers achieved the lower training errors. However, their testing error based
on independent measurements is higher in a similar way for both sources, indicating significant
over-fitting by these methods.

The organization of this paper is as follows. The data sets are briefly described in Section 2,
and the detector spectral measurements and features are described in Section 3. The ML error
profiles and the performance of the detectors are described in Section 4. The performance of three
groups of detectors based on their distance to the source are described in Section 5. A summary
of our contributions and directions for future work are described in Section 6.

2 IRSS Measurements and Data sets
Indoor and outdoor NaI detector configurations are used with multiple source strengths and types,
different background profiles, and various types of source and detector movements to conduct
structured experiments under the Domestic Nuclear Detection Office’s (DNDO) Intelligent Radi-
ation Sensor System (IRSS) program [7]. In this paper, we utilize measurements collected using
235U source of 191 uCi strength and 239Pu source of 800 uCi strength during these experiments
conducted at the SRNL LSI facility. In both cases, the source is introduced at the center via a
shielded conduit, and is stationary during the tests, and the detectors are arranged in the fixed ge-
ometric pattern shown in Fig. 1(b), which consisted of two rings with radii 2 and 4 meters with 4
and 5 detectors, respectively, and a spiral of 12 detectors. These detectors are identically produced
and configured, and the variations in their spectral quality in terms of derived source signatures
are attributed to their NaI sensor material. For each source, multiple runs were executed some of
which are used for training, and others for independent testing. In addition, several background
runs were carried out with no source present. Gamma spectrum from each detector is collected
every second, and each run using the source lasted 120 seconds and each background run lasted
60 seconds. We utilize six runs with 235U and 239Pu sources and ten background runs with no
source. The detectors form three groups of seven: the inner group with seven nearest to source,
the middle group with next seven nearest, and the outer group with rest of detectors.
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3 Features and Scenarios
The spectrum from each detector is mapped into 21 spectral bins corresponding to a set of isotopes
and the detector’s energy resolution [7], and a partial set corresponding to eight isotopes (including
235U and 239Pu) with the corresponding bin numbers and energy bounds are shown in Table 1. The
counts in 21 spectral bin are estimated at 1 second intervals, and the appropriate ones are used as
features to train classifiers for detecting the presence of a source. For 235U source, counts in
bin 5 that corresponds to 166 - 203 keV range are used as a primary classifier feature, and those
in bin 4 that corresponds to 123 - 160 keV may additionally include those from 99mTc source.
Similarly, for 239Pu source, bin 9 that correspond to 384 - 442 keV is a primary classifier feature,
whereas bin 3 that corresponds to 105 - 145 keV may additionally include those from 57Co source.
More details about measurements and count estimates from different detectors can be found in [9].
Eight classifiers are trained and tested using the background and source measurements collected
over multiple experimental runs under two scenarios, wherein each background runs consists of
60 spectra and each source run consists of 120 spectra. They are collected at the rate of 1 per
second, and the counts in bins are estimated for each spectrum, and used in two scenarios:

• Scenario S1: Training with 240 counts from 2 background runs and 1 source run, and
testing with 240 counts from different sets of 2 background runs and 1 source run.

• Scenario S2: Training with 480 counts from 4 background runs and 2 source runs, and
testing with 840 counts consists of different sets of 6 background runs and 4 source runs.

(a) 235U training - bin 5 (b) 235U testing - bin 5

(c) 239Pu training - bin 9 (d) 239Pu testing - bin 9

Figure 2: Training and testing error profiles of ML classifiers for detecting 235U and 239Pu ex-
pressed as a function of increasing detector distance.
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4 Detection and Device Performance
Eight ML methods or classifiers are tested using the data sets from scenarios S1 and S2, and their
performance is assessed using the error profiles plotted as a function of detector distance from the
source, as shown in Figs. 2 and 3.

(a) 239Pu training - bin 9: S2 (b) 239Pu testing - bin 9: S2

(c) 235U error difference - bin 5 (d) 239Pu error difference - bin 9

(e) 239Pu testing - bin 3 (f) 239Pu error difference - bin 3

Figure 3: Testing and training error profiles and their differences for ML classifiers for detecting
235U and 239Pu expressed as a function of increasing detector distance.

4.1 ML Error Profiles
Seven different classification methods and a composite method, provided by the Matlab ML
toolkit, are tested, and brief descriptions of the following six classifiers are provided in [5] (more
detailed descriptions and analytical aspects of classifiers can be found in several references, for
example [14, 15, 16]).
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Classification Trees (CTREE) Error Correcting Output Codes (ECOC)
Ensemble of Trees (EOT) k-Nearest Neighbors (KNN)
Naive Bayes (NB) Support Vector Machine (SVM)
Neural Network (NN) Auto Tuning and Selection method (AUTO)

The seven individual classifier methods represent a variety of designs: CT and EOT are tree-based
with non-smooth classification functions; kNN is based on the nearness concept in the feature
space; NN, SVM and ECOC utilize smooth underlying functions; and NB is based on statistical
principles. In addition, AUTO uses the hyper-parameter searching of CT, EOT, KNN, NB, and
SVM methods and choose one of them based on training data set.

The training and testing errors improve overall for both sources as measurements from the de-
tectors closer to source are used, as indicated by the error profiles in Fig. 2. The KNN method has
higher error for most detectors for both sources, and NN has much higher error but only for fewer
detectors. The disparity between training and testing errors is higher in CTREE, ECOC, and EOT
methods for both sources — they consistently have lower training errors at longer distances, as
indicated in Figs. 2(a) and (c) for 235U and 239Pu, respectively for scenario S1. The corresponding
testing errors indicate that SVM and NB methods achieve lower or comparable errors as indicated
in Figs. 2(b) and (d) for 235U and 239Pu, respectively for scenario S1. For 239Pu, the larger data
sets of scenario S2 resulted in a similar phenomenon as shown in Figs. 3(a) and (b), but with less
variation and somewhat lower error compared to scenario S1; similar results for 235U are in [9].

The errors of 239Pu are higher than those of 235U for both training and testing as shown Fig. 2,
even though their intensities are 800 uCi and 191 uCi, respectively. Specifically, the testing errors
of 13 out of 14 detectors are below 20% for 235U, whereas only 3 out 14 detectors have such error
for 239Pu.

The difference between testing and training error profiles for 235U and 239Pu are mainly pos-
itive for CTREE, ECOC, EOT and KNN as shown in Figs. 3(c) and (d), respectively, which in-
dicates over-fitting to the training data by them. The utilization of bin 3 counts as an alternative
classifier feature for 239Pu resulted in similar performance as indicated in Figs. 3(e) and (f); the
performance is similar for 235U with the use of bin 4 feature in Fig. 3(c) and using both features
as described in [5].

4.2 Detector Device Performance
The training and testing error profiles of classifiers for 235U shown in Figs. 2(a) and (b) have
an overall increasing trend except for two outlier detectors 14 and 2, in the inner and middle
groups, respectively. The errors of almost all of ML methods of these detectors are higher than
others in the corresponding group, which indicates the property of the device rather than classifier
method. For 239Pu, similar performance is observed, namely overall increase in classification
error with detector distance as shown in Fig. 2(c) and (d), but there is much more variation across
the detectors. Detectors 15 has the highest error for 6 out of 8 classifiers in the inner group for
239Pu versus detector 14 for 235U. And, detector 7 has the highest error in the middle group for
239Pu versus detector 2 for 235U. Since all detectors use the same codes for bin count estimation
and ML, these differences are mainly attributable to NaI material used in them. Furthermore, the
under-performing detectors are different between the two sources.
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Figure 4: Inner, middle and outer groups of detectors represent increasing detector distance.

5 Inner, Middle and Outer Groups
The detectors of three groups of seven, namely, inner (75-189 cm), middle (190-317 cm) and outer
(359-578 cm), are shown in Fig. 4. We consider the errors averaged over each group to assess
the overall performance of classifiers for 235U and 239Pu in Figs. 5 and 6, respectively. They
average out the variations due to individual detector devices within each group and illustrate the
overall effects of increased detector distances. There is an increasing trend of training and testing
errors from inner to outer groups for 235U as shown in Figs. 5(a) and (b), respectively. There is
a similar trend for 239Pu, but the errors are higher and have higher variation among the classifiers
within each group as shown in Figs. 6(a) and (b); similar trend is noted for error profiles based on
individual detectors in Section 4.1 and also in [9] for 235U. The difference between the testing and
training errors is shown for 235U and 239Pu in Figs. 5(c) and 6(c), respectively. Here, the positive
values indicate over-fitting, but these difference values need to be interpreted within the context of
actual errors; for example, the negative values for NN (Fig. 5(d)) are associated with high training
error, which still results in overall high testing error. For 239Pu, these differences are positive
(Fig. 6(d)), thereby indicating over-fitting across ML methods and groups. The performance of
individual ML methods can be visualized using the corresponding stacked plots for 235U and 239Pu
in Figs. 5 and 6, respectively, for training and testing errors. They show lower testing errors for
ECOC, NB and SVM for both sources, even though the training errors are lower for CTREE and
EOT methods, thereby showing the over-fitting by the latter.

6 Conclusions
We studied the signatures of low-intensity 235U and 239Pu sources from a detection analytics per-
spective. The detection performance improves as distance from detector to source is decreased, but
is not strictly monotonic; indeed, a few devices had very high classification errors despite being
close to the source independent of which ML method is used for detection. There are complex pat-
terns even under the controlled environment under which these data sets were collected, namely,
clean background, and the stationary source and detectors; they were previously observed for 235U
in [9], and this paper confirms them for 239Pu. Several methods provided near-optimal detection
of nearby detectors, and their differences became prominent at larger distances, and the error is in
general higher for 239Pu compared to235U. For both sources, the classifiers that achieved lowest
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(a) 235U training - bin 5 (b) 235U testing - bin 5

(c) 235U error difference - bin 5 (d) 235U error difference - bin 5

(e) 235U training - bin 5 (f) 235U testing - bin 5

Figure 5: Training and testing errors, and their differences of inner, middle and outer groups for
235U source.

training error did not result in lowest testing error, which is an indication of their over-fitting to
training data.

Future research directions include studying the effects of complex background, particularly
in outdoor and field scenarios. It would be of future interest to study the fusion of classifiers to
assess conditions under which they outperform individual classification methods for 239Pu. Such
approaches, however, have been shown to be vulnerable to over-fitting for 235U sources [10].
Another future direction includes utilizing multiple detectors for 239Pu, which were shown to
outperform single detectors in detecting 235U [10] source other radioactive sources [17], and also
using analytical methods [18, 19]. Physics-based explanations for the performance ML methods
is a topic of future investigation. The detection problem is independently studied in this paper as
a binary classification problem of 239Pu and 235U separately, and it would be of future interest to
combine them in a multi-class framework.
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(a) 239Pu training - bin 9 (b) 239Pu testing - bin 9

(c) 239Pu error difference - bin 9 (d) 239Pu error difference - bin 9

(e) 239Pu training - bin 9 (f) 239Pu testing - bin 9

Figure 6: Training and testing errors, and their differences of inner, middle and outer groups for
239Pu source.
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