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ABSTRACT 

Improved detector resolution can aid in the identification and non-destructive assay (NDA) of 

radioisotopes, which is crucial for nuclear safeguards applications. This improvement would be 

particularly useful in separating closely-spaced characteristic photopeaks within spectra used for 

enrichment measurements. A data-driven approach was developed using unsupervised machine 

learning to cluster segments of an H3D M400 pixelated Cadmium Zinc Telluride (CZT) detector. The 

candidate clusters were ranked by their resolvability, defined as the square root efficiency divided by 

the Full Width at Half Max (FWHM), to optimally trade off a modest amount of detector efficiency 

for large improvements in peak resolution. The unsupervised model was fitted using data collected 

from long-dwell (64 hour) measurements of a 100 𝜇Ci Eu-154 source placed 30 cm away from the 

front face of the H3D M400 CZT detector. The resulting model can then be applied to spectra  outside 

the training dataset. In one example, a model was applied to spectra obtained from uranium standard 

measurements from various enrichments at Lawrence Berkeley National Laboratory, demonstrating 

that the model can generalize to newly seen data from different radioactive sources. Ongoing work 

will continue to quantify spectral improvement for safeguards-relevant measurement scenarios. This 

data-driven approach offers a real-time algorithmic solution to improve gamma-ray spectrometry in 

pixelated CZT detectors. In the future, the model will be accessible to external stakeholders, such as 

the IAEA, via a python software package, to allow inspectors to select the desired resolvability 

improvement while conducting measurements in the field.  

 

INTRODUCTION 

The International Atomic Energy Agency (IAEA) performs independent verification of nuclear 

material in states with IAEA safeguards agreements. The accurate and reliable identification and 

assay of radiological sources in operational environments are therefore critical measurements for 

these safeguards efforts. For these applications, a compact gamma detector system with high 

resolution is desirable.  

 

Advancements in crystal manufacturing, Application Specific Integrated Circuit (ASIC) design, and 

signal processing techniques have led to the development of modern, large-volume, high-resolution, 

3D position-sensitive pixelated CZT gamma-ray detector systems that are owned by >75% of US 

nuclear power generating stations and are commercially available for purchase through companies 

such as Michigan-based H3D Inc. In addition to excellent energy resolution (nominally <1% FWHM 

at 662 keV), CZT-based detectors can be operated at room temperature, are compact in size, and can 

maintain good performance in high-flux environments [1]. These performance and operational 

advantages have led to an increased interest in the adoption of such detectors into the nuclear 

safeguards technology suite, as a replacement for scintillator detectors such as NaI(Tl) [2].  

 

Many years of effort have progressively improved the energy resolution of pixelated CZT, making 

these systems ideal alternatives to High Purity Germanium (HPGe) detectors for nondestructive 
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nuclear material assay and gamma-ray spectrometry. For example, the M400 system from H3D Inc. 

[3] now offers a high-resolution option with <0.65% FWHM at 662 keV for individual virtual detector 

voxels. However, to increase counting statistics and overall detection efficiency, virtual voxels are 

often combined which, due to spatially varying performance across the voxels, ultimately results in a 

degradation in energy resolution (<0.8% FWHM at 662 keV). While care has been taken to properly 

normalize and align individual voxel spectra before summation [4], there remains a capability gap to 

intelligently and automatically configure, combine, or cluster virtual detector voxels to optimize the 

detector system performance. Poorly-performing voxels can be rejected to improve the spectral 

resolution at the cost of lower detector efficiency (and therefore longer measurement times).  

 

Unsupervised machine learning techniques have become increasingly popular for pattern recognition 

and clustering tasks. Specifically, Non-negative Matrix Factorization (NMF) [5] has been used to 

model gamma-ray spectra due to its ability to enforce non-negativity while remaining consistent with 

Poisson statistics. The NMF components, learned directly from measured gamma-ray data, are 

additive and physically interpretable. For example, NMF has proven successful in discovering 

physically relevant spectral structure from known sources such as terrestrial KUT and cosmic in 

gamma-ray background data [6]. As a dimensionality reduction method, NMF provides a compact 

description of data in a lower-dimension latent space. Enforcing a normalization constraint on the 

weights results in a parts-based spectral decomposition of spectral basis vectors, where the features 

describe the importance of the spectral basis to reconstruct the original data. Like other methods of 

dimensionality reduction, NMF can be used as a basis for clustering data. This clustering 

interpretation of NMF has been used extensively in the field of document classification [7, 8]. 

Although NMF can be used for clustering, several other clustering algorithms are explored to cluster 

the voxels based on the features found during NMF.   

 

This work aims to implement data-driven, unsupervised machine learning methods to enable the 

automatic and optimal selection of the virtual detector voxels to improve spectral performance using 

the M400 CZT detector system. The approach is designed to be detector-agnostic and applicable to 

other pixelated detector systems such as segmented HPGe. The product of this effort will be a python 

software package and analysis procedure that enables end users, such as IAEA inspectors, to span the 

efficiency-resolution tradeoff in real-time in the field, ultimately improving the effectiveness of 

routine nuclear safeguards techniques.  

 

METHODS 

Data Collection & Pre-Processing 

To train the machine learning models, long dwell measurements of a 100 μCi Eu-154 source were 

performed using an H3D M400 pixelated CZT detector. Eu-154 was selected because its spectrum 

contains several characteristic photopeaks across a wide energy range applicable to safeguards 

applications (in particular, 123, 248, 723, 873, and 1274 keV). Measurements were taken head on1 at 

a 30 cm standoff on a laboratory workbench over 64 hours to ensure sufficient count statistics at the 

voxel level. 

 

 
1 The decision to take measurements head on only was made based on feedback from the IAEA as inspectors 

typically only take head on measurements during non-destructive assay inspections in the field. The detector 

was placed upside down to reduce chances of overheating. This concern is expected to be addressed in a 

software patch to be provided by H3D Inc. 
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The spectrum was collected in listmode, including 3D 

event position, and converted into binmode. Only 

single-site events were included in this analysis 

(estimated to cover >90% of all events). The M400 

CZT detector contains four discrete crystals each with 

an 11x11 grid of pixels for a total of 484 pixels. The 

XY binning (1.9 mm) was determined by analyzing 

position differences in distinct horizontal and vertical 

lines of the collected data. Each pixel was also 

discretized into 50 virtual depth bins (0.2 mm) 

between the anode and cathode for a total of 24,200 

(484x50) voxels. Small depth bins were used since 

bins could be combined later, if necessary. The origin 

is set back into the enclosure such that events at the 

anode face will have Z=0 mm and events at the 

cathode face will have Z=10 mm (Figure 1). 

 

Regions of interest were extracted around five photopeaks (123, 248, 723, 873, and 1274 keV) to be 

included in the training data. Pixel-level spectra were calibrated2 by adjusting the energy ‘gain’ 

between the actual and expected photopeak (gain = 𝐸𝑒/𝐸𝑎). The gain was calculated for each peak of 

interest and linearly interpolated between the energies. The actual peak energy was determined by 

fitting the counts to a Doniach [9] lineshape parameterized by: 
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𝜋𝛾

2
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where 𝐴 is the amplitude, 𝜇 is the centroid energy 

(keV), 𝛾 is the asymmetry (i.e., tailing) parameter, 𝜎 is 

the characteristic width parameter (keV) and 𝐸 is the 

energy (keV). A linear background model was also 

included, resulting in a 6-parameter fit to the data. The 

centroid energy represents the actual photopeak 

energy observed by the detector.  

 

Initial performance characterization of the detector 

shows significant variation at the virtual voxel level 

(Figure 2) suggesting that the poor performing 

detector regions can be identified and removed to 

improve the overall spectral performance, at the cost of 

lower detector efficiency (and longer measurement 

dwell times), thus motivating the objective of this work. 

 
2 In practice, the detector is typically calibrated prior to conducting measurements. While done in post-

processing here, we note that H3D provides an online recalibration tool in its provided software. 

Figure 1. Coordinate system of the M400 (red, 

green, blue) with individual detector IDs labeled 

(yellow). The origin is set back into the enclosure. 

Figure 2. Doniach sigma fit parameter for five 

photopeaks of interest showing voxel 

performance variation. 
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Detector Voxel Clustering 

NMF was applied to the voxel spectra for each individual photopeak (i.e., a single energy model): 

 

 𝑋 ≈ 𝑊𝐻 (3) 

 

where 𝑋 is an 𝑁𝑥𝑀 matrix representing the 𝑁 = 24 200 voxels and 𝑀 energy bins around each 

photopeak of interest, 𝑊 is an 𝑁𝑥𝐾 matrix with 𝐾 latent features, and 𝐻 is a 𝐾𝑥𝑀 matrix. The matrix 
𝐻 was normalized row-wise after each multiplicative update such that the spectral basis vectors 

represent spectral basis shapes of equal height and the features of 𝑊 can be interpreted as the 

importance of each basis on the reconstruction of the original data. The matrix  𝑊 was corrected by 

the weighting factor such that the reconstruction was preserved. Regularization (𝐿1) was enforced to 

promote sparsity on the matrix 𝑊. The number of latent features, 𝐾, was varied from  

2 ≤ 𝐾 ≤ 6 along with the regularization parameter, 𝛼, as either 0 (no regularization), 0.01, or 0.1.   

 

Next, clustering was performed on the feature matrix 𝑊 (after standardization) using several different 

clustering algorithms within the scikit-learn python package [10] including Birch [11], Agglomerative 

Clustering [12], K-Means [13], DBSCAN [14], OPTICS [15], and Gaussian Mixture [16]. The 

number of clusters, 𝑛, was varied from 2 ≤ 𝑛 ≤ 6. Clustering was performed for all combinations of 

the hyperparameters (i.e., number of NMF features, 𝐾, NMF regularization, 𝛼, and number of 

clusters, 𝑛) and represents cluster assignments against each detector voxel.   

 

Choosing the Optimal Clusters   

For each cluster within each model, the voxels were aggregated and ranked based on the new cluster 

estimated ‘resolvability’ which is defined as: 

  

 
𝑟 =

√𝑒𝑓𝑓

𝐹𝑊𝐻𝑀
≈

√𝐴

2√2 𝑙𝑜𝑔 (2) 𝜎
≈

√𝐴

2.355𝜎
 

(4) 

 

where the FWHM is calculated under a gaussian approximation of the Doniach width parameter, 𝜎, 

and 𝐴 is the Doniach amplitude indicative of the efficiency.  

   

For each model, the worst clusters were removed in order of lowest resolvability until only the best 

cluster was remaining, or the new detector efficiency fell below 10% of the bulk efficiency. Finally, 

for each model with successive clusters removed, the resolvability was recalculated to find the best 

overall detector segmentation with low quality voxels removed.  

 

RESULTS & DISCUSSIONS 

NMF Spectral Representation 

NMF was used to learn a low-dimension, latent representation of the measured spectra. The matrix 𝐻 

shows a decomposition of the spectra into parts-of-a-whole or contributions from spectral basis 

vectors. The basis vectors are interpretable and can be understood as contributing to the photopeak 

(orange, green, red, purple), background (purple), and tailing (red) of the spectrum (as seen in the left 

image in Figure 3). NMF was unable to learn a single linear background basis vector resulting in 

some unexpected poor fits on noisy data without a discernible photopeak. 
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Figure 3. Impact of regularization on NMF basis vectors (𝐾 = 4). 

 

When including an 𝐿1 regularization penalty, the basis vectors tend to overlap and lose some 

interpretability where without regularization, the basis vectors tend to stand adjacent (Figure 3). 

Regularization tends to decrease the accuracy of the reconstruction (measured using the Akaike 

Information Criterion (AIC) [17] and Bayesian Information Criterion (BIC) [18]) but promotes a 

sparse feature solution (Figure 4). Although a gain correction was applied to the collected spectra, 

some voxels still exhibit a centroid bias. With regularization, the basis vectors may not be sufficient 

to reconstruct the spectra from these voxels.  

 

 

   
Figure 4. Impact of regularization on NMF features for the first 100 voxels (𝐾 = 3). 

 

Detector Voxel Clustering 

The FWHM heatmap in Figure 5 shows the estimated FWHM (with gaussian Doniach sigma 

assumption) for each voxel. The regions closest to the anode and cathode have very low counts 

resulting in poor fits. There are strongly performing voxels largely clustered near the anode-end (but 

also near the cathode-end for higher energy peaks) with sparse voxels within the body of the detector. 

In very few cases, poor performing pixels are observed as indicated by vertical bright lines. These 

plots can be used as a baseline for the clustering algorithms whose objective is to segment the detector 

into regions based on performance.   

   

 

 
Figure 5. Voxel FWHM for each photopeak of interest assuming a gaussian distribution of the Doniach width 

parameter (white pixels indicate that a lineshape could not be fit to the data). 
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 Another baseline approach could involve using a ‘greedy’ algorithm which accumulates voxels in 

order of highest resolvability. The maximum resolvability improvements compared to the bulk 

detector are 1.07, 1.06, 1.00, 1.00, and 1.01 respectively for the five photopeaks of interest. The 

highest improvements tend to occur around 70-90% efficiency. These improvements will be 

compared to the unsupervised approach. Exploring every voxel combination (on the order of 

2^10,000) is intractable thus requiring an intelligent clustering approach.   

 

Various clustering algorithms were used to cluster the NMF features, 𝑊 as shown in Figure 6. The 

clusters tend to form depth-wise. In general, models with more clusters were able to better separate 

different regions of the detector including the regions closest to the anode/cathode and pixel level 

trends.  

 

 

   

   

   
Figure 6. Cluster assignments using various clustering algorithms and NMF models. The number of clusters 

increases from top to bottom. The regularization increases from left to right. 

 

Choosing the Optimal Clusters   

For each NMF + clustering model (>300 scenarios), the worst clusters were successively removed 

from the bulk spectra until less than 10% of the gross counts remained. The resolvability was 

calculated again to rank the remaining spectra to find an optimal model and optimal number of 

removed clusters. Over a thousand scenarios were considered for each photopeak. The optimal 

parameters, based on the final resolvability, for each photopeak of interest are shown in Table 1.  

 

The best models tend to have more NMF components potentially indicating that several basis vectors 

are required to reconstruct the data and represent the data in a lower-dimension latent space. There 
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were several instances where the reconstructions were poor on noisy voxel data resulting in 

unrepresentative features and ultimately worse clusters. Initializing the NMF basis vectors to include 

a linear background component may improve the reconstruction.  

 
Table 1. Optimal hyperparameters for the NMF + clustering model. 

Energy  

(keV) 

NMF  

𝑲 

NMF  

α 

Clustering  

Algorithm 

# Clusters 

Removed /  

Total Clusters 

Resolvability 

(best/bulk)  

Detector 

Efficiency 

(best/bulk) 

123 5 0.10 Gaussian Mixture 2 / 6 1.07 0.92 

248 4 0.00 Agglomerative  3 / 5 1.06 0.74 

723 6 0.01 Gaussian Mixture 2 / 3 1.01 0.74 

873 5 0.01 Gaussian Mixture 2 / 4 1.03 0.85 

1274 4 0.01 Agglomerative  2 / 5 1.10 0.73 

   

Less regularization improved the model’s ability to segment the detector. With regularization, the 

basis vectors have more overlap and appear to reconstruct the original data by building up the height 

of the peak. Perhaps the model is unable to find a sparse feature solution with these basis vectors. In 

the future, the sparsity should be measured to confirm regularization is acting as intended. 

 

Most clustering algorithms were able to learn a 

detector segmentation resulting in some improvement 

to the peak resolvability. In general, a larger number of 

clusters were required to allow the model to distinguish 

between the separate detector regions. The optimal 

configurations rejected roughly half of those clusters. 

However, the cluster sizes are uneven and the counts 

per voxel are not constant. The reduction of detector 

efficiency ranged from 8 – 27% indicating that most of 

the voxels are still used in the optimal detector 

segmentation. Removing the remaining clusters results 

in a large decrease in counts reducing the resolvability. 

Lastly, there is opportunity to improve the intra-cluster 

spectral variation within each cluster (see Figure 7). 

Expanding the grid search to include an even larger 

number of clusters or more fine-grained 

hyperparameter values may be beneficial in finding the 

optimal solution. 

  
The voxel clusters for the optimal models along with 

the optimal detector segments are shown in Figure 8. 

Except for the 1274 keV model, all models reject the 

regions closest to the anode/cathode with low count 

rates. Pixel level segmentation is also observed in most 

models.  

 

Figure 7. Spectra for each cluster (median in 

black) showing high variation within each 

cluster. 
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The improved spectra around the photopeak of interest utilizing the optimal detector segments are 

shown in Figure 9. The photopeaks have finer resolution and less background counts which will 

improve resolving the photopeak in the presence of other nearby photopeaks. As a trade-off, the 

detector efficiency is reduced as a result of rejecting voxels.   

 

 

   

   
Figure 8. Voxel clusters for the optimal models (top) and corresponding detector segmentations (bottom, 

yellow=on) for three of five photopeak of interest: 123 keV (left), 723 (middle) and 1274 keV (right). 

 

 

   
Figure 9. Spectra for the bulk and best detector segments for three of five photopeak of interest: 123 keV 

(left), 723 (middle) and 1274 keV (right). 

 

Application to Uranium Measurements  

The voxel- and/or pixel-level cluster removal results trained on Eu-154 data can then be applied to 

never-before-seen spectra outside the training dataset, such as uranium standards measurements, to 

test how the model could perform in the field. Measurements were taken at approximately 20 cm from 

each source, which was contained in a canister, on a laboratory workbench for 20 minute dwell times. 

The uranium sources included natural, depleted, and enriched (2-93%) samples. Figure 10 shows the 
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result of a 4 NMF component, 4 Gaussian Mixture cluster model trained on the 123 keV peak of  

Eu-154 applied to the low-energy region of a 93%-enriched uranium standard. Clear improvements 

in resolution can be seen near 80, 190, and 220 keV, though there remains ongoing work to quantify 

these improvements in terms of the resolvability metric. 

 

 
Figure 10. Voxel cluster removal results with a 93% enriched uranium standard. Spectra are 

normalized to the peak near 95 keV to better show the changes in shape. 

 

 CONCLUSIONS 

A data-driven approach using NMF and clustering was used to learn an optimal detector segmentation 

within a pixelated CZT detector to improve the spectral performance (as quantified by the 

resolvability metric FWHM/sqrt(efficiency)) by rejecting poorly-performing regions of the detector 

in order to trade off efficiency for resolution. The unsupervised learning approach performs as-well-

as or better than the greedy algorithm demonstrating its ability to automatically segment the detector 

into strong and poor performing regions. This model was applied to never-before-seen uranium 

standards spectra, demonstrating that it can generalize to sources applicable for nuclear safeguards 

applications. Improved resolvability will improve nuclear safeguards efforts, such as nuclear material 

non-destructive assay, particularly as more CZT detectors are used in favor of NaI detectors. This 

approach should be expanded to include a single model based on data from multiple photopeaks at 

different energies and offer additional voxel clustering to further traverse the resolvability-efficiency 

trade-off curve. 
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