
Interactive Deep Model Tuning for Surveillance
Review

Alvaro Casado-Coscolla∗1, Carlos Sanchez-Belenguer2, Erik Wolfart2, and
Vitor Sequeira2

1Seidor Italy SRL, Milan, Italy
2European Commission, Joint Research Centre (JRC), Ispra, Italy

Video Surveillance is a time-consuming task for nuclear safeguards inspectors, having to
review the video footage from hundreds of cameras installed in nuclear facilities worldwide.
In recent years, deep learning has proved to obtain outstanding results in common computer
vision tasks that are relevant for safeguards inspectors such as object detection or scene
understanding. Deep learning models have the potential to significantly improve the video
reviewworkflow both by providing automated data analysis and by enabling interactive tools
supporting the manual surveillance review.

However, several challenges need to be addressed in the context of nuclear safeguards.
Use cases vary greatly between different facility types and therefore deep learning models
need to be trained or fine-tuned to each specific task. Labelling large sets of training data
for each model is not feasible, as it would require too much effort and cannot be outsourced
due to the sensitivity of the data. We propose an interactive workflow using pre-trained
models that integrates data review, labelling and model tuning. It minimizes the labelling
and training effort and gives the inspector control over the tasks learned by the model.

The paper describes the workflow and underlying model architecture and presents ex-
perimental results.

1 Introduction
Video surveillance has become ubiquitous for nuclear safeguards, with cameras installed in
hundreds of processing and storage facilities around the globe. The video footage recorded
by these cameras plays a critical role in nuclear safeguards, but reviewing it can be a time-
consuming and challenging task. This process often requires expert knowledge of the com-
plex processes and environments being monitored.

In order to reduce human efforts involved in the review process, several works have
proposed the use of computer vision andmachine learning. Deep learning has proven to be a
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great resource for computer vision tasks such as object detection [1, 2], scene understanding
and segmentation [3], video summarisation [4, 5], or video classification [6] amongst others.

Frame retrieval for video analysis can help in various applications like security and
surveillance, traffic monitoring, and industrial inspection. It involves searching and retrie-
ving similar frames or regions of interest from a large collection of videos. This can be
useful for identifying specific patterns or events of interest, such as a particular object, con-
dition or activity, thus providing a more comprehensive understanding of the scene being
monitored.

In this work we propose an interactive machine learning pipeline for relevant frame
retrieval in the context of video surveillance footage review. Our pipeline features a pre-
trained deep feature extractor and a support vector machine that can be tuned online by the
domain experts. The results from this work show that our method is able to solve several
frame retrieval use-cases with high accuracy and almost no false negatives.

1.1 Previous Works
Deep models often require thousands of labelled samples in order to be trained. There are
several generalist datasets, such as COCO or ImageNet [7, 8], that represent day-to-day
objects. However, in the nuclear safeguards field limited data is available.

Synthetic data generation and simulation [9, 10] are a known solution to overcome data
scarcity. While thesemethods reduce the amount of real data that is required, a small amount
of real samples is still needed to model the domain shift between synthetic and real data. In
addition, these techniques add the overhead of modelling and simulating the environment
and the objects of interest, which comes with a cost (in time and money).

Alternatively, it is possible to focus on reducing the need of real data to the very mini-
mum with the use of few-shot models [11, 12]. In addition, we can use the inspector feed-
back from past and current reviews in order to improve our model’s performance. This can
be achieved by using techniques such as interactive labelling [13]. It is a process of adding
or correcting labels to the training data by an expert or human annotator in order to improve
the accuracy of the model. This can be useful in a variety of situations, specially in fields
with low data availability.

1.2 Overview
In this work, we introduce an interactive few-shot machine learning pipeline -illustrated in
Figure 1- for video frame retrieval on video footage that can be tuned online during the
review process. The backbone of the pipeline consists in a deep feature extractor that is
able to encode images into meaningful embeddings that are later used to train a machine
learning model (e.g. a support vector machine) along with user labels. Finally, we assess
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the performance of the proposed pipeline on real data for video frame retrieval tasks.

The rest of this document is structured as follows: Section 2 describes our proposed
pipeline for performing the interactive video review; Section 3 shows the achieved results;
finally, Section 4 draws some conclusions and outlines several future tasks.

Figure 1: Proposed workflow for interactive training of a machine learning model using a pre-trained deep
feature extractor and user feedback.

2 Approach
This work proposes a machine learning pipeline for video frame retrieval in the context
of video surveillance footage review. This task consists in finding frames whose contents
are similar to the user’s query, which can be relevant when the user has found an object of
interest or an activity in the video and would like to discover if the same behaviour appears
again along the surveillance footage.

Training a deep model for such task requires a huge amount of data (synthetic or real),
which may not be feasible in many contexts where not enough time or resources are avail-
able for acquiring or generating a proper training dataset. We address this challenge with
a machine learning pipeline that uses a pre-trained deep feature extractor in order to obtain
highly-representative embeddings of the frame contents that are later used to train a machine
learning classifier.

The training stage takes between 10 and 15 minutes per camera when a user is manually
annotating the video footage, therefore making it possible to train a model for each camera
in a facility in a reasonable amount of time. More importantly, once the model is trained
for a use-case it can be used for analysing future campaigns. However, there is always the
possibility to re-train it adding new samples from recent campaigns if needed.

2.1 Feature Extraction
Feature extraction is the process of extracting important features or patterns from raw input
data, typically images, by passing them through a series of convolutional, pooling, and
normalization layers. The goal of this process is to transform the raw pixel information of
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an image into a representation that is more useful for the downstream task at hand, such as
image classification, detection, or segmentation.

A deep CNN classifier -depicted in Figure 2– typically consists of multiple convolu-
tional and pooling layers that are designed to extract increasingly complex features from
an input image. They use a feature extractor whose output is an embedding, a numerical
representation of the contents of the input image, which is then passed to the classification
head (i.e. a set of fully connected layers) in order to make a final decision on its label).

Figure 2: Typical architecture of a deep learning classifier.

In this work, we propose the use of the feature extractor taken from a pre-trained CNN
classifier in order to obtain meaningful embeddings without the need of any training. This
represents an advantage in scenarios where limited or no labelled data is available, avoiding
the need of manually annotating the video footage.

We used OpenAI’s CLIP (Contrastive Language-Image Pre-Training) [14] visual feature
extractor for this purpose. CLIP is a deep learning model that has been pre-trained on
massive amounts of textual and visual data collected from the internet. It is designed to
understand the relationship between language and images by mapping both types of input
data into the same feature space. This allows to assign similar embeddings to images that
contain the same type of object even if their visual appearance is not so similar.

In the proposed pipeline, the user identifies one or more regions of interest (ROIs) in
which they observe a relevant object or in which they know some activity will take place.
Once ROIs are defined, the deep feature extractor processes all the video frames and gen-
erates an embedding for each ROI in each frame. Given that these embeddings contain a
numerical representation of the contents ROI, it is possible to compare them with several
similarity metrics such as the euclidean distance. However, these similarity metrics may not
be sufficient for some use-cases so we decided to treat this task as a learnable classification
problem.

2.2 ROI Classification
Each region is treated as a binary classification task in which each frame can be either equal
or different. For each region, the user labels an initial frame as a positive example for the
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relevant object that they are looking for. For example, an inspector may be looking for all
frames that contain a spent fuel cask entering or leaving a reactor pool. In this case, the
inspector would select a ROI that contains the area of the pool in the video and a frame in
which they can see the cask. Therefore, all video frames that contain a spent fuel cask inside
this ROI are considered relevant and the rest of frames become irrelevant for this task.

The extracted embeddings are used to train a support vector machine (SVM). We chose
this type of machine learning model because they need a much smaller training dataset
compared to deep neural networks, thus reducing the amount of samples that need to be
labelled by the user. Given the high-dimensionality of the embeddings it is possible that
the decision boundary between similar and not similar frames is not linear. In order to cope
with this non-linearity we use a radial basis function.

Another advantage of using SVMs is that they can be trained quickly, thus making it
possible to train a SVM after each new label from the user, which allows to update the clas-
sification results for all frames in real time. These class predictions (similar or different) are
then used to compute a final score that takes into account the predicted class and the dis-
tance to the decision boundary of the classified sample. This new score represents the final
prediction of our pipeline, assigning higher values to frames that are classified as similar
based on the user’s input.

3 Results
We evaluated our method on video footage from two different NGSS cameras installed in a
nuclear reactor: one camera in the reactor hall and one inside the transfer hatch that connects
the reactor to the rest of the facility. Some ROIs were manually defined and annotated frame
by frame in order to create a ground-truth dataset for evaluation. In Figure 3 we show an
example of an irrelevant and a relevant frame for each of the use-case.

All experiments consist in two stages: first the SVM is trained using a random subset
of a labelled dataset for each ROI. This data consists on images from few days of footage
that contain both relevant and irrelevant scenes. Afterwards, the trained model was used for
evaluating its results on the rest of the labelled data.

For evaluating themodel’s performancewe used several classificationmetrics. Precision
represents how many of our predictions are really relevant frames, while recall -perhaps the
most interesting in the safeguards domain- tells us the fraction of relevant frames our model
found. Given the amount of true positive (TP), true negative (TN), false negative (FN), and
false positive (FP) we can define them as:

Acc. =
TP + TN

TP + TN + FP + FN
Pre. =

TP

TP + FP
Rec. =

TP

TP + FN

In addition to the frame classification evaluation we also used the same metrics for eval-
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Figure 3: Relevant and irrelevant scenes for the evaluated use-case. From left to right: reactor bridge, spent
fuel cask, and hatch. Refer to subsections 3.1-3.3 for more details on the use-cases.

uating the model’s performance at event level. An event is a set of consecutive frames from
a video in which the ground truth label is the same for all of them (relevant or irrelevant).
This allows us to get a better sense of how many relevant events are really missed. For this
purpose we define a temporal overlap (TO) threshold that represents the amount of correctly
predicted frames are inside an event window for it to be considered correct. For example,
if the spent fuel cask appears inside the ROI of the transfer hatch for a total of 20 frames,
our model would need to predict as relevant at least 18 frames inside this time period for it
to be considered a correct prediction.

For the transfer hatch use-case, an event represents a slice of the video footage in which
the cask appears. In the example depicted in Figure 4 there are two events. Our pipeline’s
predictions are compared to ground-truth at (1) frame level, where we can observe four false
negatives and one false positive; and (2) at event level, where we can see that both events
were detected correctly since the temporal overlap of the correctly classified frames inside
each event is higher than the recommended 70% threshold.

Figure 4: Visual representation of the classification results along the timeline corresponding to video
footage from the transfer hatch. Given a set of user-selected labels, frames that are classified as relevant are

highlighted with brighter colours, while not relevant frames have darker tones.
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3.1 Transfer hatch: open
The transfer hatch represents a critical dataset for confirming the operator declarations.
Therefore, finding all frames where any object is being carried by the crane in the hatch
can help to validate the campaign. For this use-case the SVM was trained on the data of 6
days of 2021. Then, it was evaluated for the data of 17 days (9 days of 2021 and 8 days of
2022). In Table 1 we can see the average results after running 9 independent experiments
using 128 positive and 128 negative labels.

Accuracy Precision Recall
µ σ µ σ µ σ

Frames 0.9416 0.0973 0.8819 0.1426 0.9998 0.0008
Events @ TO 90% 1.0000 0.0000 0.7782 0.2139 1.0000 0.0000
Events @ TO 70% 1.0000 0.0000 0.9450 0.1200 1.0000 0.0000
Events @ TO 50% 1.0000 0.0000 0.9537 0.0999 1.0000 0.0000

Table 1: Performance results on the transfer hatch dataset.

Our experiments show that the model is able to identify all relevant events (i.e. maxi-
mum recall) for all the tested temporal overlap thresholds, while achieving high precision
results with a 70% threshold.

3.2 Reactor pool: Spent fuel cask
Another type of important objects of interest in the reactor dataset are spent fuel casks.
These casks can be seen entering and leaving the pool while they are being carried by the
reactor crane before they are finally transported out of the reactor. For this use-case the
SVM was trained on the data of 2 days of 2021 and 2 days of 2022. Then, it was evaluated
for the data of 7 days (4 days of 2021 and 3 days of 2022). In Table 2 we can see the average
results after running 9 independent experiments using 128 positive and 128 negative labels.

Accuracy Precision Recall
µ σ µ σ µ σ

Frames 0.9956 0.0031 0.9259 0.0904 0.9264 0.0844
Events @ TO 90% 0.7143 0.4554 0.7143 0.4554 0.7143 0.4554
Events @ TO 70% 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
Events @ TO 50% 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

Table 2: Performance results on the spent fuel cask dataset.

Our experiments show that the model is able to identify with no errors all relevant events
for temporal overlap thresholds 70%, which represents a conservative enough scenario for
this use-case.
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3.3 Reactor core: Bridge
One of the main objects of interest in the reactor dataset is the bridge crane, which is re-
sponsible of loading and unloading the fuel rods in the core. Therefore finding all frames
where the crane is positioned over the core can represent a useful asset for identifying if the
fuel replacement campaign proceeded as declared. For this use-case the SVM was trained
on the data of 4 days of 2021 and evaluated for the data of 13 days (5 days of 2021 and 8 days
of 2022). In Table 3 we can see the average results after running 9 independent experiments
using 128 positive and 128 negative labels.

Accuracy Precision Recall
µ σ µ σ µ σ

Frames 0.9184 0.0222 0.8597 0.0367 0.9867 0.0140
Events @ TO 90% 0.9675 0.0277 0.5236 0.0210 0.9675 0.0277
Events @ TO 70% 0.9912 0.0175 0.9468 0.0388 0.9912 0.0175
Events @ TO 50% 0.9957 0.0105 0.9891 0.0241 0.9957 0.0105

Table 3: Performance results on the bridge dataset.

Our experiments show that the model is able to overall identify relevant events with
really high precision and accuracy results. However, the most restrictive scenario (i.e. TO
90%) shows lower precision scores, indicating that the model may be too sensitive in some
scenarios, thus predicting them as relevant events. This may be due to the nature of the
use-case since the classification into relevant or irrelevant of the frames is subject to the
position of the bridge in the linear axis and any inconsistency during the labelling process
may affect the final predictions.

3.4 How important are skills during the review?
Interactive deep learning methods heavily rely on user input, which plays a key role in the
training of the model. The input from the user should not only be consistent and contain no
mislabeled samples but also balanced in representing the different classes. In addition to
this, we should consider the variance of the labelled classes, since some classes may contain
images that represent the same object but can be significantly different visually, therefore
making it necessary to cover all visual differences when labelling. This dependence on
user input rises the question of how significant are the user skills during the training. To
what extent can the user labels bias the model? In this section we will try to answer to
this question, always under the assumption of consistent (no labelling errors) and balanced
(same amount of positives and negatives) labels.

We evaluated our method by training it multiple times with different number of samples
so we could assess the impact of the user contribution to the final results. Remember that
this dataset was created by selecting one label for each temporal slice in order to reduce
the existence of duplicate samples. We selected the bridge use-case for this task since we
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Figure 5: Model performance results for frame classification on the bridge use-case.

considered it themost complex. In Figure 5 each box-whiskers plot represents 9 independent
experiments, which were held over 13 videos each and with 7 different dataset sizes. The
small circles represent the scores for each video.In total, more than 1.1 million frames were
evaluated.

We can observe the performance results evaluatedwith several metrics. The experiments
show a positive trend with respect to the number of labelled samples. We can also see a
reduction of the variance of the scores as more labels are used for training. The model
produces desirable results with 64 or more labelled samples, leading to high accuracy and
recall scores. This number represents an upper bound for the labelled dataset size since the
results were produced with random subsets of the training data. An experienced user would
need fewer samples.

4 Conclusions and Outlook
In this work we introduced an interactive few-shot machine learning pipeline for relevant
frame retrieval on video footage that can be tuned online during the review process. It
consists of a deep feature extractor for encoding image samples into meaningful embeddings
and a SVM for relevant frame classification. In our experiments we evaluated the proposed
pipeline on three different real use-cases with positive results and high recall.

In future works we will focus on facing unbalanced or inconsistent datasets to reduce
even further the impact of a biased labelling during the inspector’s review. In addition,
we would like to explore the effects of using other feature extractors or more advanced
techniques such as label propagation. We intend to integrate the trained model into the
inspector workflow based on NGSR.
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