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1 Abstract

Nuclear material storage containers at U.S. national laboratories must meet performance requirements
set by the DOE to ensure the safety of workers, public, and the environment. As part of these require-
ments, container inspections must be performed routinely and are often in high-dose environments
where maintaining as-low-as-reasonably-achievable dose requirements limit the number and frequency
of surveillance. Additionally, these inspections are human-intensive tasks that require a greater-than-
familiarity knowledge of each container’s status by subject matter experts. Observing and documenting
all anomalies of concern, such as dents and corrosion, both during and between inspections challenges
the current surveillance paradigm. Improvements to the frequency and accuracy of inspections can
be achieved with an autonomous system capable of detecting anomalous features of nuclear storage
containers in real-time. Our implementations use a supervised machine learning approach with region-
based convolutional neural network architectures (Mask R-CNN and Detectron2). Using both real and
simulated container images, model performance is comparable to that achieved with the COCO dataset.
Detection of all anomalous features, especially those not trained into supervised models, presents a
larger challenge. Our approach leverages the use of two separate techniques: unsupervised machine
learning models and sensor fusion for online automated training. We evaluate the improvements fea-
sible from unsupervised anomaly detection to identify previously unseen defects and allow datasets to
be entirely constructed from images of undamaged nuclear storage containers. A second improvement
leverages supervised learning instance segmentation models on 2D images augmented with additional
3D scanning hardware to generate “ground truth” true-positive regions autonomously in a bench-top
implementation. These techniques are combined to build a more general toolset that can better detect
nuclear material storage container anomalies and improve container inspections overall.



2 Introduction

Short term nuclear material storage at Los Alamos National Laboratory (LANL) must be compliant
with requirements outlined in Department of Energy (DOE) Manual 441.1-1 [1], hereafter Manual.
The Manual prescribes a range of properties and performance criteria for container packages to ensure
maximized containment of nuclear material. The SAVY-4000 container is the Manual compliant con-
tainerization package of choice at LANL, and is the principle barrier to radiation release in storage
environments. Thus, the container must maintain performance requirements and structural integrity
throughout its service life to ensure continued protection to the worker, public, and environment.

Inspections of storage containers performed in recent years have shown the appearance of corrosion
occurring in a variety of containers, including the SAVY-4000 and older Hagan containers [2, 3, 4, 5].
Figure 1 provides examples of corrosion appearing in both container types. Under some conditions,
corrosion has appeared on steel components near the filter of the container. The presence of corrosion
has implications for many of the performance qualification requirements, notably the design qualifica-
tion release rate. Pristine SAVY-4000s have an established release rate drop below the A2 limit for the
most conservative storage conditions. There is currently little to no information on the performance
for containers exhibiting corrosion.

Figure 1: Images of corrosion appearing in (a) Hagan and (b) SAVY-4000 storage containers during service.
External indicators of corrosion visible on certain (c) Hagan and (d) SAVY-4000 lids near the filter.

Moreover, structural damage to containers, in the form of dents, are caused routinely by operators
handling containers. Minor dents are not a concern for pristine containers as the conditions that cause
dents are significantly less catastrophic than a 12 foot drop test used to demonstrate compliance with
Manual release rate limits. As a result, most containers remain in service with minor dents or surface
damage. However, these defects often leave a net tensile stress on the inner wall and can exacerbate
corrosion processes inside the container. Detecting their presence on containers and quantitatively
evaluating damage to the container wall are both key pieces of information necessary for assessing
container health following the appearance of corrosion.

A key activity prescribed by the Manual to ensure container reliability involves routine surveillance.
This, however, is a human-intensive effort whose quality relies heavily on the operator’s knowledge and
familiarity with storage containers, in addition to its use history. Inspections can be further limited
by other factors including time constraints placed on surveillance activities. The development of an
analytical tool that combines subject matter expert classification knowledge and with a shareable data
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output is critical to improving the current surveillance paradigm. Our recent efforts have focused on
the development of robust supervised and unsupervised machine learning (ML) models that can be
deployed in the field to co-opt the experience and enhance data acquired during surveillance activities.

3 Related Work

Most recent computer vision approaches to nuclear material container surveillance can be loosely
categorized as supervised, unsupervised, or a combination of the two.

Supervised approaches are widely used for image classification, object detection, and segmentation
problems. In these types of problems, an expert-in-the-loop draws around instances of interest, anno-
tating the data and thereby pinpointing an example of an object to be detected. A supervised approach
can be implemented for segmenting features of interest on SAVY-4000 and Slip Lid containers alike.
In the case of SAVY-4000 containers, we demonstrated undamaged container feature detection with
the state-of-the-art Mask R-CNN implementation created by Meta AI via Detectron2 [6].

Mask R-CNN can also be used for detecting damage features on nuclear material storage containers.
In previous work, we demonstrate Mask R-CNN for segmenting instances of dents and scratches on
the surface of Slip Lid containers [7, 6]. This model utilized three different cameras to segment dents
and scratches. While the report demonstrated reasonable (about 86%) precision, the composite image
accuracy sorely lacked (at 40%) and demonstrated a need for expanded approaches to improve damage
detection, particularly to eliminate false negatives.

(a) (b)

Figure 2: Figure (a) shows the raw image collected from a color camera. Figure (b) shows the ground truth
instances of damage (red) and the detections performed by Detectron2 (green), underscoring the need to eliminate
false negatives.

Unsupervised approaches have recently generated interest for their potential use in expanding detec-
tion capabilities. Because unsupervised approaches to computer vision problems require no annotation,
the time from training to inference is often significantly shorter. These types of models can often be
used for clustering or anomaly detection. Anomaly detection is of particular interest because the pur-
pose of an algorithm is generally to train on observations that are typical and make inferences on
images that are atypical. This is particularly attractive when the dataset is sparse, because unsuper-
vised anomaly detection frameworks such as PatchCore or PaDiM require only about 100 images of
pristine examples to train sufficiently.
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4 Dataset Enhancement

One of the advantages to using the Mask R-CNN implementation in Detectron2 is the flexibility of image
data that the implementation can incorporate. Because the Detectron2 Mask R-CNN implementation
is built in PyTorch, the number of channels accessible can be easily changed to accommodate a custom
channel from a pre-processing step. Ideally, a step would account for suspected areas of damage on the
surface of a Slip Lid container and would only minimally add to the total training process. In this, we
took inspiration from an unsupervised approach to processing the Slip Lid images before training on
Detectron2 Mask R-CNN implementation.

4.1 Patch Distribution Modeling (PaDiM)

Patch Distribution Modeling (PaDiM) is a state-of-the-art unsupervised anomaly detection capable of
detecting and localizing image anomalies. Because pre-trained CNN architectures can output relevant
features, PaDiM can completely bypass conventional supervised neural network optimization practices
to generate patch embedding vectors. Using the patch embedding vectors generated, PaDiM learns
the image features of a given image dataset by assuming a multivariate Gaussian distribution and
computing a covariance matrix given by

Σij =
1

N − 1

N∑
k=1

= (xkij − µij)(x
k
ij − µij)

T + ϵI

where Σij represents the sample covariance matrix, N represents the number of normal training
images, xkij represents an embedding vector for an image k, and µij the sample mean of the set of
embedding vectors.

After training, the covariance matrix and mean can be saved as a model for deployment. To
make inferences with this model, PaDiM uses the inverse of the covariance matrix to compute the
Mahalanobis distances between the test image patch embeddings and the learned normal distribution,
returning a map of patch anomaly scores given by

M(xij) =
√
(xij − µij)TΣ

−1
ij (xij − µij)

where M(xij) is the matrix of Mahalanobis patch distances as a function of tested patch embedding.
Interpolating the distances to the dimensions of the test image, this effectively generates an image map
of anomaly scores [8]. Should the image be converted to gray scale, the heatmap could be used as a
channel. If a threshold is set, this enables PaDiM to segment anomalous instances, however for the
purposes of this work we choose to omit the segmentation step.

Figure 3: The images from left to right describe the PaDiM algorithm. PaDiM trains on pristine examples and
computes anomaly heatmaps. Setting a threshold, it allows the option for automatic segmentation of anomalies.
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4.2 PaDiM Pre-processing

PaDiM is an attractive candidate for an unsupervised pre-processing step because anomaly map images
can be processed as a heatmap, converted to grayscale and used as an additional channel for an image
dataset trained on Detectron2. An additional channel creates another aspect of the data the model
conforms to when optimized. By concatenating an additional channel to the RGB images in a damaged
Slip Lid container dataset, the newly enhanced image dataset provides additional information to a
candidate CNN-based machine learning architecture.

Another advantage to using PaDiM for pre-processing is that it takes nominal time to train. A
training session for a PaDiM model trained on a 200-image dataset requires roughly 2 minutes to
extract the features and start computing anomaly maps. This is in direct contrast to the supervised
Detectron2 implementation of Mask R-CNN, which is known to take significantly more time to train.
Adding a pre-processing step is therefore negligible to the overall training time.

4.3 Deterministic Ground Truth Generation

Although significant progress has been made with respect to detecting anomalous features of interest
within visual images, the limitation of using only one visual sensor leads to false detections in some
cases. This can pose a challenge for an automated system compared to human performance, where we
naturally use the many senses we have (sight, touch, smell, etc.) to form a more complete model of
the world. The two most utilized senses for detecting physical anomalies on containers are sight and
touch, which can be approximated using a visual camera and a depth-mapping system. An additional
challenge comes from the container material itself, which is relatively reflective. Simple stereoscopic
vision and time-of-flight (ToF) cameras are not well-suited for this application because of the reflective
surface and sharp specular highlights, but other technologies such as structured light sensors with
multiple exposure capabilities.

The LMI Gocator Snapshot sensor was selected because of its wide field of view, quick scan time, and
software API. Previous work has shown its application on metallic containers to reconstruct an entire
surface model, which is leveraged in this work. Indentations (dents) can be detected by calculating
a local radius of curvature for each vertex on a reconstructed 3D mesh and isolating regions with a
negative curvature. This process can be overlaid on a visual image to either generate ground truth
detections or validate inferences performed by another detection method, like Detectron2.

5 Experiments

5.1 Unsupervised Training with PaDiM

One of two pre-processing steps was used for computing anomaly maps in an effort to further localize
detections to regions of interest. The procedure for concatenating an anomaly channel to augment the
dataset from three to four channels was as follows:

1. A PaDiM set to the PyTorch ResNet-18 backbone was trained on 225 undamaged 3-Qt Slip Lid
containers with a NVIDIA A6000 GPU.

2. The PaDiM model was used to compute the anomaly score maps of an additional 309 images of
both damaged and undamaged Slip Lid containers.

3. The images were scaled and converted to grayscale, then concatenated as an additional channel
to each corresponding RGB Slip Lid image.
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4. Detectron2 was then trained on the 4-channel enhanced image dataset and evaluated on a separate
set of 40 Slip Lid containers.

The second procedure where the G channel was replaced with the anomaly map was as follows:
1. A PaDiM set to the PyTorch ResNet-18 backbone was trained on 225 undamaged 3-Qt Slip Lid

containers with a NVIDIA A6000 GPU.
2. The PaDiM model was used to compute the anomaly score maps of an additional 309 images of

both damaged and undamaged Slip Lid containers.
3. The images were scaled and used to replace the G channel for each image in the Slip Lid image

dataset.
4. Detectron2 was then trained on the 3-channel modified image dataset and evaluated on a separate

set of 40 Slip Lid containers.

5.2 Sensor Fusion Experimental Setup

A Universal Robotics UR5e robotic manipulator was used to position a sensor package integrating a
LMI Gocator 3210 Snapshot sensor with a FLIR Blackfly S color camera above an inspection table.
A software package was developed to integrate a Detectron2 model trained on container bodies and
various types of damage with the robotic hardware used [6]. At each step in the process, the detected
outputs are visible to the worker to ensure the procedure is being completed appropriately. The test
procedure is as follows:

1. A worker places a container on the inspection table and starts the robot’s movement sequence.
2. The robot uses the visual camera to locate the container by moving the end-effector in a planar

motion at a fixed height.
3. Once the robot has successfully located the container, it changes to position the visual camera

at a set distance from the side of the container and collects five images in a sequence and detects
damage using a trained Detectron2 model.

4. The robot moves the end-effector vertically to collect multiple scans with the Gocator sensor at
three exposure levels each.

5. A mesh-processing step is performed to register and merge the measured point clouds and convert
the composite to a triangular mesh that can be evaluated for curvature.

6. Both the Detectron2 inferences of dents and the computed regions of negative curvature are
superimposed on the original image to compare detection accuracy between each method.

6 Results

6.1 PaDiM

Performance
Dataset Container Dent Residue Scratches AP AP50 AP75
4-channel PaDiM 94.4648 18.8316 77.5495 0.7633 47.9023 62.4847 50.7775
3-channel PaDiM 94.5780 14.9780 73.1683 1.9878 46.1780 62.2216 49.7031
Original 94.3988 16.6292 74.2244 1.3892 46.6604 62.0277 49.9312

Inferences were conducted according to the procedures outlined in 5.1 and 5.1 with varying degrees
of success. Average precision (AP) scores were computed for each class and overall for Jaccard indices
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(IoU) of 50% and 75%. The first unsupervised pre-processing technique outlined in 5.1 was slightly
successful for the 4-channel system. While each overall AP metric improved slightly with the addition
of a fourth channel from the unsupervised pre-processing of PaDiM, each was minute, ranging from a
0.7% - 2.6% increase in overall AP score. What is more pronounced is the effect pre-processing had
on individual class AP scores for segmentation. Adding a fourth channel improved the ’Dent’ class AP
score by 13.2% from the original and about 4.5% for the ’Residue’ class. Outlying this trend is a 45%
decrease in scratch detection performance from the original.

The second pre-processing technique outlined in 5.1 was largely unsuccessful. For the 3-channel
replacement method, the AP and AP75 scores actually declined slightly while the AP50 slightly im-
proved. The ’Dent’ class AP scores performed the worst of the three approaches, but performed the
best on the scratches of the three approaches.

6.2 Sensor Fusion

The sensor fusion process outlined in 5.2 proved to be successful. Containers could be placed in an
area roughly bounded by a 30cmx40cm rectangle before limitations related to the robot’s workspace
were observed. The workspace limitation was partially resolved by orienting the camera at an angle
above the container for the localization step, which significantly increased the area the container could
be placed because the minimum distance is bounded by the LMI Gocator’s working distance. The
detection confidence threshold was set to 50% to ensure a container could be detected from multiple
perspectives with temporal stability while driving the robot, which lead to multiple false positive
detections annotating workers’ feet, chair legs, or even the table as "containers". This issue was solved
by sorting the detections by confidence and only using the mask with the greatest confidence.

For the damage detection step, the confidence threshold was also set to 50%. False positives detected
around the room were negated by overlaying the "container" mask with the highest confidence and
only drawing detections on areas under that mask. Detection performance was excellent overall, and
the system was run multiple times with multiple containers with novel damage that was not included
in the training process. The entire procedure from the moment the robot begins moving to the final
comparison between Detectron2 and the LMI Gocator takes 30 seconds. Once the container is localized
on the container, other images and scans can be collected without restarting the whole procedure,
significantly improving damage detection. An example of an image detected with the system is shown
in Figure 4.

This process does have a couple limitations compared to manual annotation. The field of view
of the LMI Gocator sensor used is more narrow than the visual camera, resulting in the accuracy of
deterministic detections decreasing significantly towards the sides of the container tangent to the view
direction. Work is being performed to improve the working field of view by using a larger Gocator
Snapshot sensor and integrating multiple viewpoints. Another limitation lies with the current algorithm
used to determine if a container is dented. It is not unusual to find protruding divots caused by an
internal item or container, which are of similar interest. This could be solved by comparing the scanned
point cloud to a known "pristine" one from the same perspective to measure deviations.

7 Conclusion and Future Work

Our experiments using an unsupervised pre-processing technique yielded mixed results, particularly
between the dent and scratch classes. The first experiment, which used an anomaly map for a fourth
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(a) (b) (c)

Figure 4: Figure (a) shows the raw image collected from a color camera. Figure (b) shows the detections
performed by Detectron2 (blue), false positives proposed by Detectron2 (manually recolored to orange) and a
false negative annotated manually after the detection step (red). Figure (c) shows overlaid detection masks
(white) generated by the Gocator sensor.

channel yielded better segmentation for ’Dent’ instances and poorer segmentation for ’Scratch’ in-
stances. This may be for a few reasons. First, there are far more instances of dents than there are
of scratches in the training set. Scratches could also be harder to discern due to their narrow fig-
ures. Second, because the fourth channel by default is interpreted as an alpha channel by Detectron2
Mask R-CNN implementation, it is entirely possible that the image was too faded to interpret without
significant modification.

This work also investigated the value of fusing the data from a standard visual imaging camera with
the additional information provided by a high resolution depth camera. A test fixture was constructed
using a UR5e robotic manipulator to position a camera and LMI Gocator sensor in front of a metal
nuclear storage container analog to overlay detections, showing value as a consistent method for val-
idating damage detections from current machine learning models. Although the LMI Gocator sensor
is likely not the best tool to observe nuclear storage containers in storage due to its limited working
volume and large size, it does show promise as a tool for generating large datasets of annotated images
with limited worker interaction to enhance the performance of current machine learning models.

7.1 Future Work

One path forward with this work could be to further constrain the use cases of anomaly map pre-
processing. While we demonstrated mild performance increases for dent and residue segmentation
with the addition of a fourth anomaly channel to the dataset, PaDiM was originally created for images
of the same camera perspective. This dataset used mostly the same perspective with somewhat different
angles, which may have contributed to error. This could potentially affect the initial feature extraction
process PaDiM uses to compute the embedding vectors (meaning, the representation of what is typical).
Using a dataset entirely from one perspective could alleviate the issue of high anomaly scores clustering
around table top corners, for example. Integrating this capability into our in-house ML tool could also
be of use for pre-processing applications beyond Slip Lid containers.
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Another promising path forward may be to use the segmentation and masking capabilities from
PaDiM for detection. Because PaDiM computes anomaly maps, a threshold can be set as a metric for
contouring and masking. Should the threshold be optimized, the model could perform segmentation
tasks similarly to supervised CNN architectures such as the Detectron2 Mask R-CNN implementation.
This means that it potentially it could not only perform segmentation faster, but segment instances of
damage that are novel to a supervised model. This could be applicable for hybrid or semi-supervised
approaches to segmenting all damage on containers. A supervised approach could, for example, make
inferences on all types of damage known to it, while an unsupervised approach could segment anomalous
instances of damage, deferring to the supervised model if there is too much overlap.

Finally, one of the most promising paths forward from this work is the development of a more
closely integrated robotic system for damage detection and data generation. The test setup utilized
a UR5e robotic manipulator with an inspection table designed for the smaller UR3e model, but the
software tools and sensor package developed for the bench-top proof-of-concept will transfer quickly to
the other robot. Other sensors could be integrated to expand the imaging capabilities to include the
inside of containers for annual inspection activities.
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