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Abstract

A key challenge for future nuclear disarmament treaties lies in veri-
fying the completeness of fissile material baseline declarations. One
approach for this is nuclear archaeology, which aims at reconstructing
the past fissile material production of a country. It is a set of methods
to infer operational production histories of nuclear facilities, typically
combining forensic measurement data with simulation models of the
examined facilities. Hence, nuclear archaeology methods usually ap-
ply to the facility level so far. They do not take into account fuel
cycle-level information that may also be contained in declarations,
such as material flows between facilities. To provide a platform for
such fuel cycle analyses, we develop Bicyclus, an open-source Python3
module that couples nuclear fuel cycle simulations with an inference
framework. The user models a fuel cycle in Cyclus, an open-source
simulator, and inputs measurement data and rough estimates of the
operational parameters to be reconstructed. Examples of parameters
are the capacity factor of a reactor or the efficiency of a reprocessing
facility. Following this, the software reconstructs those parameters
using Bayesian inference and Markov Chain Monte Carlo algorithms,
and yields estimates of the produced fissile material. Furthermore,
Bicyclus can be used in a measurement-independent mode. Here, the
user specifies ranges of values for uncertain operational parameters.
Then, a Quasi-Monte Carlo method is used to efficiently sample this
parameter space and to obtain aggregated fissile material estimates
and uncertainties. We showcase our approach with a hypothetical
nuclear fuel cycle for military purposes. First, we modelled the fuel
cycle in Cyclus and generated synthetic measurements of the high-level
reprocessing waste and the depleted uranium. Using these measure-
ments in Bicyclus, we reconstructed both operational parameters key
to the plutonium and HEU production as well as the overall fissile
material production. Last, we performed a measurement-independent
estimate of the produced fissile material.

1 Introduction

In a nuclear disarmament scenario, one important step is to determine a
state’s fissile material stockpile and to eventually safeguard it. During this
process, uncertainties will inevitably remain and may well correspond to tens
or hundreds of weapon-equivalents. Because of this, a robust uncertainty
assessment is crucial to ensure that uncertainties are as low as possible and
that the their origins are well understood [1].

Today, experts use available (open-source) data to get independent
estimates, as done for example by the International Panel on Fissile Materials
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[2]. In a disarmament scenario, one could use other tools like nuclear
archaeology to reconstruct the fissile material production of a state. By
combining simulation models of the fissile material production processes
with physical evidence, such as the isotopic composition of nuclear waste,
nuclear archaeology can be used to verify a state’s fissile material declaration
[1].

To be successful, both methods have to take into account the complex
processes of the nuclear fuel cycle (NFC) and disentangle the interlinked
operations of the different facilities. Especially for larger NFCs, this is a
difficult task. To overcome this problem, we propose to use NFC simulations.
We introduce Bicyclus, a self-developed, open-source Python3 library,
and use it to perform independent fissile material assessments as well as
reconstruct the fissile material production of an example NFC.

2 Modelling the Nuclear Fuel Cycle

We use Cyclus, a modular, open-source simulator, to model the NFC [3].
In Cyclus, nuclear facilities are represented by so-called agents. These are
independent from each other and their behaviour is solely governed by their
respective internal states. Apart from ‘doing things’ with nuclear material,
such as enriching it, agents can offer and request material in each timestep.
Cyclus gathers these offers and requests, determines matching request-offer
pairs and executes the trades by transferring the material between the
facilities. Here, it takes into account any pre-set preferences, such as the user
defining that a reactor prefers uranium oxide over mixed oxide fuel, or that
the reactor’s requests should get fulfilled first. Thus, the simulator effectively
optimises material flows between facilities in each timestep. At the end of
the simulation, a large amount of information is stored in an output file,
including data on all material transfers and material compositions.

3 Investigating the NFC

In order to obtain sound fissile material assessments with Cyclus, we use
two different statistical tools. First, we generate independent fissile material
estimates using a quasi-Monte Carlo (QMC) sampling method. Then, in
a second step, we can verify prior information or assumptions with actual
measurement data in a Bayesian inference framework. While the actual
work is similar in both tasks—repeatedly simulating the NFC with varying
input parameters—the underlying concepts are fundamentally different, as
will be explained in the following.

3.1 Assessing Fissile Material Production

Many unknowns arise when trying to determine fissile material production:
how much natural uranium got mined, how long did the reactors run, how
much enrichment capacity was available, etc. Such uncertainties must be
propagated through the NFC to evaluate their impact on the final fissile
material balance. Numerical methods are useful for this, especially for
complex NFCs. By transforming uncertainties into probability distributions,
e.g., uniform ranges where all parameter values are equally likely, and
repeatedly simulating the NFC with different parameter combinations drawn
from these distributions, we obtain aggregate fissile material estimates.

In this work, we use Sobol sequences, a QMC approach, to generate
the parameter combinations [4]. Sobol sequences have the advantage of
being so-called low-discrepancy sequences, meaning that they cover a high-
dimensional parameter space much more efficiently than, e.g., standard grid
sampling or pseudorandom sampling.
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3.2 Verifying Inventories with Bayesian Inference

In the context of nuclear archaeology, we use Bayesian inference to reconstruct
fissile material production with both measurement data and simulations.

Bayesian inference is based on Bayes’ rule, p(θ|y) ∝ p(θ)p(y|θ), where θ
is a model input parameter and y a measurement. In the following, p(θ) is
called the prior distribution, p(y|θ) the likelihood and p(θ|y) the posterior
distribution.

In our application scenario, θ corresponds to a vector of nuclear facility
parameters, such as an enrichment capacity or a reactor power, and y is a
vector of measurements such as the isotopic composition or the total mass
of nuclear waste. Thus, the prior reflects any knowledge on the nuclear
facilities, e.g., as obtained through open-source data. The likelihood uses
case-specific mathematical formulations to compare the measurements to
corresponding simulated values, assuming certain parameter sets. Finally,
the posterior describes the reconstructed facility parameters, taking into
account both the prior knowledge and the measurements.

Solving an inverse problem with Bayesian inference is not trivial, as
an analytical calculation of the posterior is only possible in few cases.
Alternatively, the posterior can be numerically constructed using Markov
chain Monte Carlo (MCMC) methods, where we repeatedly draw samples
from a so-called transition distribution. This is done in such a way that
with each step, the constructed posterior distribution approximates the true
(unknown) posterior better and better [5].

4 Implementation

The final step is to combine Cyclus with the QMC and Bayesian inference
methods into one coherent framework. To this end, we have developed
Bicyclus, an open-source Python3 library [6, 7]. It offers two operation
modes, the forward mode and the reconstruction or inference mode.

The forward mode corresponds to the QMC approach, where we generate
independent fissile material estimates. Here, the user specifies the NFC in
a template Cyclus input file and defines the parameter distributions for
uncertain parameters. Then, Bicyclus uses SciPy’s implementation of
Sobol sequences to generate all input parameter sets and runs the large-scale
simulations [8]. The fissile material estimates and any other information can
subsequently be read out from the simulation output files using separate
scripts and aggregate mean values and uncertainties can be determined.

Syntactically, the reconstruction mode is similar to the forward mode.
The user first defines a template input file and the parameter distributions
for uncertain parameters, i.e., the priors. Additionally, they need to define
the likelihood: Which values should be extracted from a Cyclus output
file, e.g., an isotopic composition vector x⃗ of a material, and how should
they be compared to measurement data? For example, the user could use a
Gaussian function as likelihood L such that

L ∝ exp
(
−(x⃗measurement − x⃗simulation)

2/2σ2
)
, (1)

with a given uncertainty σ.
Having defined the prior as well as the likelihood, Bicyclus has all

necessary information and can start preparing the sampling process. For
this and all other MCMC-related operations, it uses PyMC, an open-source
Python3 library [9]. It transforms priors and likelihood into PyMC functions,
generates initial values and then starts the sampling process to obtain the
posterior distribution. There, the following steps are performed repeatedly:
1. draw a parameter sample from the priors using PyMC, 2. generate a
Cyclus input file, 3. run the simulation, 4. extract relevant simulation

3



uranium
mine

enrichment
HEU

stockpile

reactors
I – IV

reprocessing
plutonium
stockpile

Figure 1: Nuclear fuel cycle and material flows used in the case study. Note
that support facilities, such as material storages, were used in the simulation
but are omitted in this scheme for clarity.
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Figure 2: Timeline of the simulated NFC, showing the start of operations of
each facility.

output and calculate the likelihood, 5. return the likelihood value to PyMC
and go back to 1.

Apart from this core functionality, Bicyclus handles additional tasks
such as logging, data visualisation, and it offers the possibility to store all
of Cyclus’ simulation output files. This feature is important, as it allows
for an extensive analysis and postprocessing of data even after the actual
inference process is finished. It will be used extensively in the following case
study when reconstructing the fissile material production.

5 Case Study

In the following, we show how Bicyclus can be used to estimate fissile
material production. First, we present the NFC used in this work. Then,
we perform a measurement-independent assessment of the fissile material
stockpiles and last, we use nuclear waste measurements to infer fissile material
production.

5.1 Modelling a Military Fuel Cycle

The NFC used here is loosely based on Pakistan’s military nuclear pro-
gramme1, following [10], and is shown schematically in Fig. 1. It can
produce highly-enriched uranium (HEU) and plutonium, as well as recycle
irradiated uranium which can then be enriched to weapon-grade levels. Each
simulation covers a timespan of forty years and uses one day as simulation
timestep. In order to increase realism and to have a dynamic simulation,
some facility parameters are time-dependent, such as the enrichment facil-
ity’s separative power, and the four reactors are deployed over the course of
the simulation, see Fig. 2.

The uranium mine starts with a pre-existing natural uranium stockpile
and produces additional uranium at varying rates during the simulation2.

1This study does not aim at recreating Pakistan’s programme. Some details, such as
uranium imports, have been omitted for the purpose of simplicity.

2The initial stockpile of 339 t corresponds to the uranium production from 1971 to
1983 of, on average, 28.25 t per year. Later annual production varies between 23 to 50 t,
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The enrichment facility is modelled as an ideal cascade [7], producing 90%
enriched HEU with 0.3% enriched tails. The spent fuel composition is
based on own reactor simulations and on data from [2] for a pressurised
heavy water reactor (PHWR) running at a burnup of 1.2MWd/kg.3 The
reprocessing facility separates the spent fuel into three outgoing material
streams (plutonium, uranium and waste stream) with a 99% separation
efficiency in plutonium and uranium streams.

Furthermore, we assume that plutonium is preferred over HEU, thus
the simulation is configured to send natural uranium to the reactors first if
requested, then send remaining natural uranium to the enrichment facility.
It should be noted that this preference mechanism only takes into account
the requests of the current timestep and it does not anticipate events, such
as a reactor needing a large amount of uranium in the subsequent timestep.

Based on the structure of the NFC, we can—qualitatively—expect to
observe the following three ‘phases’ over the course of a simulation:

1. HEU production: At the beginning, all natural uranium is enriched to
HEU, within the given feed- and separative power-constraints.

2. HEU and plutonium production: Once reactor I starts operating,
natural uranium resources are shared between enrichment and the
reactor.

3. Natural uranium shortage: At some point during the deployment of
reactors II to IV, the natural uranium demands of the reactors and the
enrichment facility exceed the mine’s production rate4. At this point,
the enrichment facility starts using reprocessed uranium as enrichment
feed. Additionally, if there is no uranium available, the reactors or the
enrichment facility will temporarily suspend operations.

5.2 Quantities and Parameters of Interest

The overarching goal of the case study is to assess the total HEU and
plutonium production given different input uncertainties and constraints.
Specifically, we consider uncertainties on two parameters: the capacity
factors of the reactors and the separative power of the enrichment facilities,
both of which, in theory, influence the fissile material production linearly5.
In practice however, this relationship may be more complex and questions
arise, such as: How does the limited natural uranium supply change this
result? How will the interplay between reactors and enrichment via the
reprocessing facility affect the fissile material production? We investigate
these questions and their influence on the final fissile material balance in
the following using the forward and reconstruction modes of Bicyclus.

5.3 Independent Fissile Material Estimates

To obtain first estimates of the fissile material production, we use Bicyclus’
forward mode and the parameter distributions from Table 1. We generate
211 = 2048 sets of parameter samples and run the corresponding simulations,
producing the fissile material estimates shown in Fig. 3. The HEU production

settling at 45 t per year from 2010 onward [11].
3At this burnup, the plutonium in the spent fuel is still weapon-grade, i.e., it has a

Pu-239 content of 93.8%.
4Refuelling all four reactor cores, each containing 9450 kg uranium, already consumes

most of the yearly natural uranium production of 45 t. Given the low burnup and their
powers ranging from 49 to 100MWth [12], they need to be refuelled more than once
per year. This refuelling schedule can only be kept up for so long using excess natural
uranium having accumulated over the years.

5The capacity factor equals the online time divided by the total cycle time, i.e., online
plus offline time. The separative power is proportional to the number of centrifuges and
is a measure of how much uranium can be enriched to a given level.
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Table 1: Parameters varied throughout the case study. The parameters are
uniformly distributed within the given ranges, the capacity factor is assumed
to be identical for all four reactors and the separative power variation applies
from 1999 onward. The ground truth only applies to the inference mode.

parameter unit range ground truth

capacity factor % 50 – 80 70
separative power kg SWU/year 20 000 – 45 000 30 000

3000 4000 5000 6000
total HEU production [kg]
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Figure 3: Two-dimensional histogram and marginal distributions of total
HEU and plutonium produced in 2048 simulations, each covering 40 years.
The solid lines in the marginals are kernel density estimates (KDEs).

spans nearly uniformly from 3 100 to 6 100 kg, while the plutonium production
ranges from 520 to 810 kg.

Furthermore, these results show that it is not possible to maximise both
HEU and plutonium production at the same time: A plutonium production
of more than 670 kg implies there was an increased uranium consumption
of the reactors, leading to a natural uranium shortage in the enrichment
facility. To compensate this loss, the enrichment facility used reprocessed
uranium as enrichment feed. Because of its lower enrichment level, this feed
required more separative work per unit amount of produced HEU, resulting
in a decrease in overall HEU production.

While the forward simulations yield important insights, such as proof
of the natural uranium constraints, the fissile material estimates remain
uncertain. These uncertainties can be significantly reduced if measurement
data becomes available.

5.4 Inferring Fissile Material Production

Combining forward simulations and measurement data in the Bayesian
framework allows to compare our prior assumptions and, ideally, to obtain
aggregate, more precise fissile material estimates. In this case study, we use
synthetic measurements which are generated by defining a ground truth (the
‘true’ parameter set), then running one Cyclus simulation with these values
and using the resulting simulation output to obtain the measurements.

In the following, we will study the impact of different measurements on the
reconstruction of the parameters, which in turn impacts the reconstruction
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0.6 0.7 0.8
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Figure 4: Posterior distributions obtained by measuring Cs-137 content in
the reactor waste. The cutoffs are due to the fact that the posteriors cannot
lie outside the range of the priors. The groundtruth values are shown as red,
dashed line and the blue, solid lines are KDEs.

of the fissile material. Specifically, we first consider the amount of Cs-137 in
the nuclear reactor waste, and second we additionally consider the mass of
depleted uranium tails from the enrichment facility. These quantities have
been chosen because of their relationship to the respective fissile material
productions: Cs-137 is a fission product and its amount in the reactor waste
thus scales with the reactor’s total irradiation time; depleted uranium is a
byproduct of uranium enrichment and, for a given enrichment process, scales
linearly with the amount of HEU produced. While these measurements could
be performed in an actual application, they cannot guarantee completeness
(e.g., a malicious actor could hide tails containers or reenrich tails) and
further studies are needed. This work focusses only on the simulations and
the conceptual aspects.

Throughout the analysis, we use a Gaussian likelihood with 5% relative
uncertainty, see Eq. (1), and the priors and ground truth from Table 1. All
inferences use PyMC’s Slice sampler with 15 independent chains, each
with 100 tuning and 100 actual samples.

Using these settings and considering only the Cs-137 measurement, we
obtain the posterior distributions shown in Fig. 4. The uncertainty on
separative power remains essentially unchanged, while we have managed
to reduce the uncertainty on the capacity factor with a posterior mean
value of 0.713± 0.047 and a 95%-highest density interval (HDI) from 0.638
to 0.799. Nonetheless, uncertainties remain at a higher level, especially
considering the right-hand flank of the posterior: Intuitively, we would
have expected a better reconstruction of the capacity factor because of the
physical correlation between itself and the caesium fission product.

This unexpected result can be explained by Fig. 5. Instead of the expected
linear correlation, data points fan out for larger values of the capacity factor
and we observe an additional dependency on separative power, where data
points farther off the diagonal correspond to larger separative powers. This
phenomenon is a consequence of the inference process: For a given capacity
factor, different separative power values were drawn, which influences the
natural uranium consumption of the enrichment facility and therefore also
the amount of natural uranium available to the reactors. If the separative
power is large, it can lead to a uranium shortage and as a consequence,
reactor operations may temporarily be on hold. The reactors will not reach
the desired (input) capacity factor and they will produce less spent fuel, i.e.,
less plutonium and less Cs-137.

To resolve this ambiguity, we add the depleted uranium mass measure-
ment to the inference and we obtain the results shown in Fig. 6. We notice
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Figure 5: Using only the Cs-137 measurement in the inference results in
ambiguities: one measurement can correspond to multiple capacity factors,
and vice-versa.
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Figure 6: Posterior distributions obtained by measuring Cs-137 content in
the reactor waste and the total uranium tails mass. The groundtruth values
are shown as red, dashed lines and the blue, solid lines are KDEs.

that the separative power posterior now has a significantly smaller spread,
peaking at around 30 300 kg SWU/year with a 95%-HDI from 26 710 to
32 890 kg SWU/year. Additionally, the reconstruction of the capacity fac-
tor improves: Its posterior becomes narrower and the right flank falls off
much steeper compared to the caesium-only measurement. To explain this
improvement, we refer back to Fig. 5: The depleted uranium measurement
improves the separative power reconstruction drastically, which resolves the
above-mentioned fanning out and the ambiguous mapping between Cs-137
and the capacity factor.

Having successfully reconstructed both parameter values, we can now
evaluate the fissile material production corresponding to the posteriors using
the stored Cyclus output files. We find that (4330 ± 180) kg HEU and
(710± 34) kg plutonium were produced in this scenario, see Fig. 7. These
results are in very good accordance with the true values of 4328 kg HEU
and 709 kg plutonium.

Using the output files, we can reconstruct additional quantities, such as
the specifics of the HEU enrichment. For instance, we can determine how
much of each enrichment feed (natural and reprocessed uranium) was used
as function of the sampled parameters, see Fig. 8. We clearly observe that
higher separative powers consume more reprocessed uranium, which is due
to the overall higher uranium consumption. Additionally, there is a more
subtle dependency on the capacity factor: For a capacity factor larger than
0.7, reprocessed uranium gets used in the majority of cases. This arises from
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Figure 7: Fissile material estimates reconstructed using the Cs-137 and
uranium tails measurements. The values corresponding to the groundtruth
are shown as red, dashed lines and the blue, solid lines are KDEs.
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Figure 8: Total amount of reprocessed uranium used as enrichment feed

the reactors consuming most natural uranium, resulting in a shortage at the
enrichment facility.

In a verification scenario, information such as material flows could be
reconstructed and then be compared to archived data, such as shipping
notes between facilities. Thus, this method could open up a multitude of
possibilities to cross-check documentation with inference data and to verify
any indications made by the entity under inspection.

6 Conclusion

This paper introduced Bicyclus, a software package aimed at investigating
fissile material production in NFCs. We explained its working principle
and showcased its use with an NFC with plutonium and HEU production
capabilities. Here, we demonstrated how to obtain measurement-independent
fissile material estimates, as well as how to reconstruct the fissile material
production using measurement data. Last, we showed how the extensive
Cyclus output data can be used to reconstruct additional quantities, which
could be of interest in a verification scenario.

In a next step, we will investigate how accurately Cyclus depicts
actual nuclear programmes. Especially in the early stages of a nuclear
programme, the NFC may well be an inefficient cycle with losses and under
development—opposing the picture drawn by Cyclus, which optimises the
material flows in each timestep. Investigating such potential discrepancies
will help understand model uncertainties, leading to a more robust overall
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uncertainty assessment.
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