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ABSTRACT

Radiation portal monitors positioned at seaports form a crucial part of national security in-
frastructure by providing a means to deter and detect the illicit transportation of nuclear and
radioactive materials. With around 90% of global goods transported by sea, it is essential that
international freight can be rapidly and non-invasively screened for materials that have potential
use in radiological dispersal devices or improvised nuclear explosive devices. To maximise detection
efficiency, conventional radiation portal monitors use low-cost, large-area scintillator detectors,
usually polyvinyl toluene plastic, that maximises the collection of gamma radiation as any concealed
sources pass through the portal monitor. While advantageous in many regards, a drawback of using
large area scintillators in radiation portal monitors is that they are non-directional; it is impossible
to determine the direction from which the measured radiation originates. In this work, an algebraic
method called maximum likelihood expectation maximisation (MLEM) reconstruction is applied to
simulated data from the non-directional detectors found in conventional radiation portal monitors.
The MLEM method is well studied in the field of medical imaging where high resolution, small, and
directional detectors are used and has more recently been applied to radiation mapping problems
with non-directional detectors. To use the MLEM reconstruction method in shipping container
screening the response function of each detector in the radiation portal monitor to a radioactive point-
source is first characterised on a regular grid of points in the centre of the portal monitor. Through
making assumptions about the cargo, such as homogeneity throughout the shipping container and
prior knowledge of the material composition, an attempt is made to include the attenuating effect of
the cargo in the detector response function. With the detector response function defined for a given
cargo type, three variants of the MLEM method are used to characterise concealed point-sources in
the cargo for reference cargo types, including a container filled with scrap metal. Preliminary results
show the algorithm is capable of localising the source to within a few voxels in the discretised
space in the container and estimating the activity to the correct order of magnitude.
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I. INTRODUCTION

Ocean shipping is the dominant transport mode for global trade, with around 90% of traded goods
being shipped across the seas [1]. As a result, seaports are critical nodes for international trade
and commerce. The large volume of freight passing through seaports every day means they can be
targeted by terrorists or criminal organisations seeking to smuggle contraband or dangerous materials
into or out of countries. The unauthorised distribution of radioactive or nuclear materials by such
means poses threats to national and global security as they could be fabricated into radiological
dispersal devices (RDDs) or improvised nuclear explosive devices (INEDs). The detonation of
RDDs or INEDs has the potential to cause loss of human life, as well as significant economical
and societal damage. Already in 2023 there have been widely reported cases of lost radioactive
materials, including a capsule containing 137Cs in Western Australia and tonnes of Uranium in
Libya [2][3]. While the materials in questions were recovered, both cases demonstrate how material
suitable for use in RDDs or INEDs can be misplaced with the potential to end up in the hands of
malicious actors and highlights the need for a robust and sensitive screening procedures to prevent
trafficking of such materials through seaports.

Existing infrastructure in place at seaports to screen imports for radioactive materials consists of
radiation portal monitors (RPMs) utilising plastic-based scintillators for γ detection and separate
neutron detectors, usually 3He-based [4]. The affordability and large available sizes of plastic
scintillators, such as polyvinyl toluene (PVT), make them suitable for detecting γ emitters without
disrupting the flow of cargo through the seaport as the large-area detectors can be placed in RPMs
straddling multiple traffic lanes. Unfortunately, the energy resolution of PVT scintillators is poor,
meaning any detection events that cannot be ruled out as threats using processing techniques such
a spectral windowing or template matching [4], must be investigated in a secondary screening
phase to identify the isotope(s), activity, and location of the source(s) causing the alarm. Plastic-
based RPMs are, therefore, susceptible to false-positive alarms from naturally occurring radioactive
material (NORM) and medical sources. As all alarms require costly and time-intensive secondary
investigation, there exists a trade-off between maximising detection efficiency and minimising false
alarms, which require considerable operational resources.

Proposed methods for screening shipping containers for radioactive materials in the future vary
from drone-based screening with modular-spectroscopic radiation detectors, to cosmic muon to-
mography for special nuclear material detection [5][6]. However, the ability of RPM-based systems
to maintain a high throughput of containers with minimal impact on port operation makes it highly
likely that screening systems will rely on RPMs in the future. This work considers the data from
a PVT-based RPM in combination with an advanced data processing algorithm to demonstrate
how the activity and location of a radioactive point-source concealed in a shipping container, as
well as the background count-rate, can be accurately characterised. Doing so will contribute to
existing algorithms for processing PVT-based RPM data, ultimately helping to minimise false-
positive alarms [7].

Specifically, an image reconstruction technique called maximum likelihood expectation maximi-
sation (MLEM), commonly used in reconstruction of PET or SPECT data in medical imaging, is
utilised to determine the radioactive source distribution within a shipping container using RPM
measurements. The MLEM method is demonstrated for single or multiple radioactive point-source
localisation in [8] using a non-directional detector. More recent work using a directional detector has
accounted for attenuation in surrounding materials [9]. However, in the case of shipping container
screening the detectors are non-directional and the distribution of attenuating cargo within the
container is unknown. The non-directionality implies that the range of possible paths and materials
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traversed by γ radiation incident onto the detector is not well defined, therefore making it difficult
to account for the attenuation in the cargo, container and surrounding materials. One method to
address this relies on x-ray radiographic images of the container to estimate the density, and hence
the shielding profile of the cargo [10]. However, the use of such active screening techniques may
not be feasible in all scenarios. To solve this problem, this work adopts the simplest possible model
of cargo in a shipping container and using the variants of the MLEM algorithm described in [8]
demonstrates how a point-source concealed in a shipping container can be accurately characterised,
accounting for attenuation when the cargo material is known.

II. THEORY

To use image reconstruction methods to determine the distribution of a radioactive source,
radiation measurements are expressed in vector notation as;

Y = A · x + bt, (1)

where Y are the mean counts expected in each of the I measurements, x is the activity distribution
of the radioactive source discretised into J voxels within a shipping container, A is the I×J
projection matrix or detector response function (DRF) that maps the source distribution space onto
the measurement space, b is the mean background count-rate for a specified detector, and t is the
vector of measurement times [8]. The goal of a reconstruction algorithm is then to find the solution
to the optimisation problem;

x̂, b̂ = argmin
x,b

ℓ(x, b|y) + βR(x), (2)

whereˆrepresents the optimum values, and ℓ is the negative log-likelihood of the radioactive source
distribution given the measurements, y. The second term in (2) is comprised of a weight factor,
β, and a penalty function, R(x), which is used to incorporate a priori knowledge of the source
distribution into the solution. For the detection of point-like radiation sources, a sparse solution is
desirable. A penalty function found to produce sparser solutions than the unpenalised algorithm
when reconstructing a source distribution from measurements obtained with a Compton-imaging
detector is proposed in [11], and has the form;

R(x) =
∑
j

log
(xj

δ
+ 1

)
, (3)

where δ is a scale factor.
The counts in each measurement, yi, are the sum of independent Poisson random variables, Nij ∼

Poisson(aijxj) and Bi ∼ Poisson(bti). As a result, the negative log-likelihood can be expressed as;

ℓ(x, b; y) = − log(P (y; x, b)) =
∑
i

∑
j

aijxj −Nij log(aijxj) +
∑
i

bti −Bi log(bti), (4)

where the factorial terms in the respective summations have been ignored as they are independent
of x and b. To extend the method to account for attenuation in a given medium Nij is updated to
Nij ∼ Poisson(aije−µgρrijxj) where ρ is the medium density, µg is the mass attenuation coefficient
of the medium, and rij is an average distance through the medium from the j’th voxel to the
detector in the i’th measurement [9][12].
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Incorporating the attenuation factor into the DRF, the iterative update equations can be derived
from (4) and for the unregularised MLEM method are given by;

x̂k+1 =
x̂k

AT · 1
⊗
[
AT · y

A · x̂k + b̂kt

]
, (5)

and

b̂k+1 =
b̂k

tT · 1

[
tT · y

A · x̂k + b̂kt

]
, (6)

where k is the iteration number. In addition to unregularised MLEM, regularised MLEM with the
penalty function (3) and a point-source MLEM (MLEM PS) variant are compared. The iterative
update equations for the regularised MLEM algorithm are derived in [11]. The point-source variant,
proposed in [8], solves (2) with no regularisation for a single voxel, zeroing the activities in every
other voxel and returning the optimum point-source solution.

III. DATA SIMULATION AND ALGORITHM IMPLEMENTATION

A. Simulated RPM Data
Figure 1 depicts the model of the RPM and the transiting shipping container used in this work.

The PVT-based RPM is modelled as four 60×3.8×203 cm (L×W×H) PVT panels, with 5 m
between the faces of the two panels on either side of the RPM.

A standard 20 ft shipping container is modelled as a cuboid shell with external dimensions
606×243×259 cm and 5 mm wall thickness. Within the container, cargo is modelled as a homoge-
neous cuboid with dimensions equal to the maximum internal dimensions of a standard container,
587×233×235 cm [13]. Three cargo compositions are considered: no cargo; iron cargo at 0.2 gcm-3,
approximately the average loaded container density; and iron cargo at 0.6 gcm-3, close to the density
limit for a loaded container [14]. With 28% of containerised commodities imported into the US in
2006 being metal based, iron represents a likely cargo and the homogeneously distributed cargo
could represent scrap metal, machine parts, or transportation equipment [14].

To represent the characteristic emission from 137Cs, which finds widespread use in industry and
medical applications in TBq quantities, a 662 keV γ source is modelled as a 2.5 cm sphere [15].
The source is positioned within the cargo at the center, mid, and corner positions indicated in the
technical drawings in Figure 1.

The GEANT4 simulation toolkit is used to determine the number of counts measured by the
PVT detectors as the shipping container passes through the RPM [16]. The model of the RPM,
container, cargo, and source are defined in GEANT4 as described in the above paragraphs, and the
container position within the RPM is varied. Measurements are simulated in the region where the
source position lies within 2.5 m of the RPM center; at a transit speed of 1.2 ms-1 (4.3 kmhr-1) this
corresponds to 41 measurements, each separated by 0.1 s (12 cm). At each measurement position
107 (no cargo) or 108 (0.2 and 0.6 gcm-3 cargo) initial 662 keV γs are generated in GEANT4 and
tracked through the geometry.

B. RPM Detector Response Function
For every measurement, the j’th element of the DRF describes the fraction of radiation emitted

from the j’th voxel that registers as a count in the detector. This is approximated by;

Aj = ϵGj ϵ
I
j exp(−l

wall

j ρironµiron
g ) exp(−l

cargo

j ρcargoµcargo
g ), (7)
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Fig. 1: 3D model of a shipping container (blue cuboid), the cab of a flatbed truck (red), a concrete
floor (grey), and four PVT scintillator panels (white). Technical drawings are provided showing the
external dimensions of the container, the source positions within the cargo and the cargo outline
within the container. All units are in cm.

where ϵG is the geometric efficiency, ϵI is intrinsic efficiency, lm is the average path length
through medium m, ρm is the density of medium m and µm is the mass attenuation coefficient of
medium m at 662 keV. Geometric efficiency describes the solid angle from the source subtended by
the detector (divided by 4π) and is calculated stochastically; random γ trajectories are sampled and
the fraction that intersect the detector, defined with intersecting planes, is equal to the geometric
efficiency. A simple extension of this algorithm allows the path length through the detector volume
to be determined for each sampled γ trajectory, which is used to estimate the intrinsic efficiency of
the detector for 662 keV radiation. With a method established to determine the average path length
through a box by sampling random γ trajectories and seeing where they intersect planes that define
the box, it follows that the average path lengths through the container walls and cargo can also be
determined.

In approximating the DRF with (7), several factors have been ignored. Firstly, 662 keV γs
scattered to lower energies in the cargo or container walls may deposit energy in the detector.
Such ‘buildup’ radiation is not accounted for in (7) and, consequently, the use of (7) results in
an underestimate of the number of counts in the detector. Secondly, using an average path length
to describe the distance between a voxel center and detector face may be a poor approximation;
especially considering the large-area detectors used in this work. Thirdly, the use of exp−lρµg as
opposed to exp−lρµg is expected to result in an underestimate of the attenuation factor, equivalent
to overestimating the attenuation. Clearly, (7) also requires that the cargo material composition,
characterised by µ, and distribution are known. This work assumes the cargo fills the internal di-
mensions of the shipping container and that µcargo

g is known; improvements to these key assumptions
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are explored in Section VI.

C. Algorithm Implementation
All simulations and calculations in this work are performed on a laptop computer with an IntelTM

i7 4 core processor and 16 GB of RAM. Generation of RPM measurement data in GEANT4,
evaluation of the DRF, and estimation of the average path lengths through the cargo and container
walls all require computation time on the order of days. Implementation of the MLEM algorithm
variants require only seconds of computation.

To determine the y values to be used in (5) and (6), the nine measurement datasets (three source
positions and three cargo configurations) described in Section III-A are scaled to the desired source
activity, 10 MBq, and a constant background count-rate sampled from a Poisson distribution with
mean 5000 CPS is added. Each of the MLEM variants is then applied to the datasets to determine
x̂ and b̂ using the DRF (7) with µcargo

g equal to the mass attenuation coefficient of iron at 662 keV
and ρcargo equal to the cargo density, which can easily be calculated from the container mass using
the cargo distribution assumed in this work.

For all three variants of the MLEM algorithm, the source distribution is initialised as a flat
solution with 0.1 MBq in each voxel. In regularised MLEM the effect of the penalty function
(3) is to threshold the data, with β roughly defining the threshold position [11]. To determine the
optimum β and δ values for use in the regularised algorithm (3) a rough search over the parameters
is performed for each source position and cargo combination to determine which values resulted
in the highest fraction of the source distribution in the voxels including and adjacent to the voxel
containing the true source position. The optimum β values vary from 0.01 to 100, though they are
typically larger when the source is localised successfully, whereas δ values are typically 0.001.

Overfitting can be common when using the MLEM algorithm and in this case results in back-
ground radiation erroneously being attributed to the source distribution. As a result, indicators of
overfitting may be an underestimate of the background count-rate or non-sparse solutions. Defining
convergence criteria for MLEM, for example based on the change in likelihood between iterations,
is a common method to prevent overfitting. However, in this work a fixed number of iterations,
50, is used for consistency. As is discussed in Section IV there is evidence of overfitting for the
unregularised MLEM and regularised MLEM methods, but optimisation of convergence criteria is
left for future work.

IV. RESULTS

Firstly, the ability of each variant of the MLEM algorithm to localise the 10 MBq source is
considered by calculating the distance between the voxel in the reconstructed solution that contains
the maximum activity and the true source position. For regularised and unregularised MLEM with
any of the defined cargo, the localisation error when the source is in the centre position is consistently
over 1.5 m; one reconstructed solution when the source is in the centre position is shown in Figure 2.
Such failure to localise the source is attributed to multiple local minima existing in ℓ due to the
symmetry of the problem when the source is in the centre of the cargo. With the source in the
corner and mid positions regularised and unregularised MLEM localise the source to between 20
and 80 cm, representing better performance. In comparison, MLEM PS consistently localises the
source to within 30 cm at all source positions, except with 0.6 gcm-3 cargo and the source in the
centre position where the localisation error is 90 cm (shown in Figure 3 (left)).

Next, the activity of the reconstructed source distribution is considered. When the source is not
‘accurately’ localised - in the centre position with the regularised and unregularised MLEM methods
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Fig. 2: Three cross-sections of the radioactive source distribution reconstructed using unregularised
MLEM with measurements of the 10 MBq source when it is in the centre position with 0.2 gcm-3

iron cargo. Localisation error calculated from the voxel with the maximum activity: 1.5 m.
Localisation error calculated from the activity weighted voxel position: 0.8 cm.

- the total activity of the reconstructed distribution is still the same order of magnitude as the true
point-source. In the corner and mid positions with unregularised and regularised MLEM the sum
of the source distribution typically overestimates the total activity of the 10 MBq point-source
with ranges of 20-86 MBq and 9-43 MBq, respectively. The fraction of the activity in the most
active voxel is higher using regularised MLEM, though is still only 1.5-3.8% and 17.8-27.8% of
the total activity for the mid and corner positions, respectively. Along with the visual comparison
in Figures 4 and 5, this supports the expectation that the regularised method should result in a
sparser, and ultimately more point-source-like solution. Again though, MLEM-PS is more accurate
here, with the reconstructed source activity in the point-source solution being between 3.5-56 MBq
for all source positions and cargo densities except when the source in the corner position and the
cargo density is 0.6 gcm-3, for which the activity is 243 MBq. This last outlier (shown in Figure 3
(right)) grossly overestimates the activity; possible explanations are discussed in Section V.

Fig. 3: The point-source solutions reconstructed using MLEM PS when the 10 MBq source is in
0.6 gcm-3 iron cargo and the source is: (left) in the center position; (middle) in the mid position; and
(right) in the corner position. The associated localisation errors, predicted activities and predicted
background CPS are: (left) 90 cm, 3.5 MBq, and 5784 CPS; (middle) 28 cm, 29.3 MBq, and 5172
CPS; and (right) 51 cm, 234 MBq, and 7951 CPS.

Finally, background count-rate estimates are evaluated. Using unregularised MLEM the 5000 CPS
count-rate assumed in each detector is typically underestimated by a factor of 10. When considered
with the overestimation of the activity, this suggests that the MLEM algorithm may be overfitting
the data. Regularised MLEM yields slightly better background estimates and MLEM PS produces
the best, with estimates differing from the expected 5000 CPS by factors of 0.03-3.3 and 0.95-5.7
for regularised MLEM and MLEM PS, respectively.
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Fig. 4: Three cross-sections of the radioactive source distribution reconstructed using unregularised
MLEM when the 10 MBq source is in the mid position and there is no cargo.

Fig. 5: Three cross-sections of the radioactive source distribution reconstructed using regularised
MLEM (β =100, δ =0.001) when the 10 MBq source is in the mid position and there is no cargo.

V. DISCUSSION

This work demonstrates that the MLEM PS method is superior to unregularised MLEM and
MLEM regularised with the penalty function (3) for localising a point-source concealed in a
shipping container. The MLEM PS method successfully localises the concealed source and predicts
the 10 MBq activity and 5000 CPS background count-rate to the correct order of magnitude for
containers with no cargo or 0.2 gcm-3 iron cargo. However, a concealed source could be disguised
in many forms within a container and NORM cargo, such a ceramic materials or cat litter, is more
likely to be spread throughout the container [17]. Consequently, it is important to develop the
non-point-source variants of MLEM alongside MLEM PS as it is essential to differentiate between
these different alarm-inducing sources, and as such algorithm variants that do not constrain the
reconstructed distribution are desirable.

It worth noting here that, as the regularised and unregularised MLEM methods result in a solution
distributed over multiple voxels, the use of the voxel that contains the maximum activity to calculate
the localisation error may belie their performance compared to MLEM PS. If instead the average
voxel position weighted by the solution in each voxel is used to calculate the localisation error,
a reduction in localisation error is seen across all cargo when the source is in the centre or mid
position. While it is promising that the average proprieties of the solution reflect that of the concealed
source, they may not always represent accurate solutions; the use of the average location of the
solution suggests the algorithm localises the source well in Figure 2, when clearly the point-source
distribution is poorly characterised.

With 0.6 gcm-3 iron cargo, which is close to the loading limit of the container, the performance
of MLEM PS decreases with large localisation errors and activity estimation errors occurring (see
Figure 3). Such a drop in performance at higher cargo densities is expected as the additional
attenuation decreases the signal-to-background ratio in the detectors. The drop in performance is
compounded by the limitations of the DRF discussed in Section III-B: the omission of buildup

VIII



radiation and use of average path-lengths through the cargo are cargo density dependent factors
affecting the ability of the algorithm to accurately predict the source activity. Both these factors
are expected to overestimate the attenuating effect of the cargo and, therefore, go some way to
explaining why all MLEM variants typically result in activity overestimates. Considering the case
when the source is in the corner position with 0.6 gcm-3 iron cargo, significant activity overestimates
of 86, 43, and 234 MBq are produced by unregularised MLEM, regularised MLEM, and MLEM
PS, respectively. It is suggested that this is due to the volume of cargo between the source and the
two detectors farthest from the source; if a significant fraction of the detected radiation is buildup
radiation and the attenuation of the 662 keV source emission is overestimated then, to compensate,
the algorithm predicts that the source is a higher activity. Over or under-fitting due to the fixed
number of iterations used may also play some role here and the implementation of convergence
criteria is a simple extension that will be included in future work.

Fusion of PVT-based RPM measurements with data obtained from spectroscopic detectors, such
a NaI(Tl) and LaBr3(Ce), are likely to form a part of future shipping container screening systems.
Such detectors are necessary to identify characteristic emission from any radioactive material within
cargo, which is essential to determine at which energies to evaluate the attenuation coefficients used
in the DRF (7). By extracting photopeak data from measured high-resolution spectra, the omission
of buildup in the DRF is justified for a mono-energetic source, although, coincident events and
buildup in the in the presence of a poly-energetic source could inflate the counts in a photopeak.
Consequently, spectroscopic detectors can yield further improvements to the MLEM algorithm
performance [18], but their associated cost and the limitations on available sizes of means that they
are unlikely to replace PVT-based RPMs completely, despite commercially availability.

VI. FUTURE WORK

Whatever detector set-up is implemented, the biggest challenge faced by this method is in
characterising the cargo to use in the DRF. So far the simplest possible cargo model is used:
homogeneous cargo composed of one material completely filling the container. To extend this
method a wider range of cargo distributions and compositions must be considered, that still allows
for the average paths lengths through the cargo to be calculated. A cuboidal model of the cargo is
proposed with varying height cargo. Assuming the container is filled from the base, the cargo fills
the entire floor space of the cargo, and the centre of mass (CoM) of the container can be obtained,
the height of the cargo can be determined. Such a method requires the CoM of the container (in
3D) to be calculated, which poses a further challenge, but is conceivable given the lifting processes
involved in transporting shipping containers.

Determining the composition of the cargo, which must be known to select the attenuation
coefficient used in the DRF, poses another considerable challenge. Relying on cargo manifest
information assumes the trust and competence of the person(s) loading the container and filling in
the manifest information. To overcome this problem, a confidence interval around the algorithm
outputs could be constructed based on the ‘expected’ contents of the container, whether that be
estimated from cargo manifest information or from a container’s typical contents [14]. Such an
approach may result in more false-positive alarms due to the sensitivity (exponential dependence)
of the algorithm to the µcargo

g used; overestimating µg may result in significant activity overestimates.
Beyond improving the cargo and DRF model, future work will consider a wider variety of sources.

A key performance metric of shipping container screening systems is their ability to differentiate
between nuisance and legitimate threat sources, therefore, the ability of the algorithm to characterise
nuisance cargo must be evaluated.
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VII. CONCLUSIONS

The abilities of three MLEM algorithms to accurately localise and predict the activity of a 10 MBq
662 keV point-source concealed in a shipping container filled with iron cargo and passing through a
PVT-based RPM are compared. Using simple assumptions of the cargo distribution and composition
reasonable localisation performance is achieved, with the best results occurring when knowledge
that the source distribution is a point-source is provided. PVT-based RPMs favoured for their low
cost and large available sizes are likely to form a crucial part of future shipping container screening
systems. Resultantly, demonstrating that accurate source location, source activity, and background
count-rate estimation is achievable with existing plastic scintillator-based RPMs indicates how
primary phase screening of shipping containers can be further optimised to reduce the occurrence
of false-positive or false-negative alarms in the future.
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